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Deep learning–based video analytics demands high network bandwidth to ferry the large volume of data

when deployed on the cloud. When incorporated at the edge side, only lightweight deep neural network

(DNN) models are affordable due to computational constraint. In this article, a cloud–edge collaborative ar-

chitecture is proposed combining edge-based inference with cloud-assisted continuous learning. Lightweight

DNN models are maintained at the edge servers and continuously retrained with a more comprehensive model

on the cloud to achieve high video analytics performance while reducing the amount of data transmitted be-

tween edge servers and the cloud. The proposed design faces the challenge of constraints of both computation

resources at the edge servers and network bandwidth of the edge–cloud links. An accuracy gradient-based

resource allocation algorithm is proposed to allocate the limited computation and network resources across

different video streams to achieve the maximum overall performance. A prototype system is implemented

and experiment results demonstrate the effectiveness of our system with up to 28.6% absolute mean average

precision gain compared with alternative designs.
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1 INTRODUCTION

Empowered by the advances in deep learning technologies, video analytics based on deep neural

network (DNN) models are applied across a wide range of tasks including image classification,

object detection, semantic segmentation, and so on, which are essential for growing applications

such as intelligent video surveillance [45, 49, 64], smart transportation [31, 48, 59], and autonomous

vehicles [32, 55]. With the increasing presence of networked cameras, the volume of video data

to be processed is growing rapidly, which in turn challenges the scalability of existing design of

video analytics systems.
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Fig. 1. The three-layer cloud–edge collaborative architecture for video analytics.

Deep learning–based video analytics demands high network bandwidth if the large volume of

data is streamed through network and requires rich computation resources for processing at in-

ference servers for reasonable performance. Generally, video analytics systems are deployed on

the cloud, e.g., Microsoft Azure [8]. Cloud-based DNN inference enables the usage of complex but

resource-consuming DNN models, e.g., Faster-RCNN [39] for object detection. All video sources,

however, have to stream their data to the centralized cloud server, which demands excessive data

transmissions via wide-area networks (WAN) due to the geographically large scale. When the

network bandwidth is limited, data compression techniques such as frame filtering [24] and reso-

lution downscaling [11] are applied that heavily degrade the performance of DNN models.

In contrast, edge-based DNN inference executes inference tasks on regional edge servers geo-

colocated with nearby video sources and more richly interconnected with high bandwidth local

area networks (LAN). While the network condition allows high-quality low-latency video data

to be streamed to the edge servers, the generally throttled computation resources at edge servers

limit the scale and complexity of DNN models that can be adopted. In such a case, only lightweight

models can be used, e.g., SSD [29]. As a result, edge-based inference is less resilient to concept drift

[51] and may suffer from low inference accuracy during runtime.

To leverage the advantages of both cloud- and edge-based inference, this article proposes a

cloud–edge collaborative architecture. Figure 1 depicts a typical setting of the proposed design.

The video sources, edge servers, and the cloud form a three-layer architecture. Instead of deploying

stand-alone DNN models at edge servers, the architecture adopts a continuous learning approach—

lightweight DNN models are deployed at edge servers for the inference task of each video stream

and are periodically retrained on the cloud and sent back to edge servers. In such a design, frames

uploaded to the cloud are used as training samples instead of for cloud inference. With periodical

model retraining, the cloud–edge collaborative architecture helps the lightweight models learn the

up-to-date data distributions with real-time ingested video content and alleviates the performance

degradation caused by concept drift.

A major challenge in adopting the proposed cloud–edge collaborative architecture stays with

the fact that both the computation resources at edge servers and the network bandwidth between

the cloud and edge servers are constrained, and it is non-trivial to judiciously allocate the limited

resources across video streams to yield a higher inference accuracy. Due to constrained computa-

tion and network resources, edge servers may not be able to process video streams with full frame

rates or send all video frames to the cloud for retraining in real time. Meanwhile, some video

content are more sensitive to resource dynamics while others are more resilient, and such diver-

sity varies both over time and across streams. Consequently, appropriate inference and retraining

configurations are desired to decide the amount of video data for inference and retraining, which
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corresponds to a comprehensive resource allocation problem to allocate available computation and

network resources across video streams.

A general solution to such a resource allocation problem is of high complexity mainly due to

two points. First, because video content varies dynamically, the expected accuracy of different

retraining and inference configurations needs to be probed online regularly and over each video

stream, which involves computationally intensive operations, including model training and infer-

ence. Second, the size of the search space for the optimal combination of configurations that yields

the maximum overall accuracy grows with the number of available configurations as well as video

streams. In this article, we propose a heuristic named accuracy gradient to quantify the sensitivity

of different video content toward resource variation. Leveraging the accuracy gradient, we devise

a depth-first search (DFS) algorithm that greatly reduces the probing overhead by pruning the

search space and reducing probing count. Besides, the proposed scheme embeds a non-trivial sys-

tem solution to probe the inference accuracy of each stream with regard to the amount of allocated

computation and network resources, which reduces the amortized cost of a single probing opera-

tion. Combining the two designs, the computational overhead caused by resource allocation can

be well constrained without detrimenting the accuracy gain from continuous learning.

Model retraining, while essential in our system, imposes computational demands on cloud re-

sources and introduces delays due to the training time, which subsequently affects the timeliness

of model updates. Though the cloud is often perceived to possess abundant computational capac-

ities for such retraining, it is impractical to anticipate infinite scalability, especially as the system

expands to accommodate an increasing number of video streams. Furthermore, prolonged training

periods can make retrained models less up-to-date, undermining the very purpose of retraining.

To solve the problem, we devise an aggregated model training technique to curtailing the training

overhead on the cloud. Instead of retraining the full model of each stream independently, models

are divided into backbone and head. Video streams are grouped and a common model backbone is

shared within each group. The shared backbone is retrained at a lower frequency than head using

data aggregated over time and across streams. Consequently, the overall training cost on the cloud

is reduced, and model update timeliness can be further improved.

In summary, this article makes the following contributions:

— We propose a cloud–edge collaborative architecture to support scalable DNN-based video

analytics by leveraging continuous learning.

— An accuracy gradient-based solution is proposed to address the major challenge in computa-

tion and network resource allocation during runtime that achieves high resource allocation

efficiency with low system overhead.

— An aggregated model training technique is devised to reduce the training overhead on the

cloud and improve model update timeliness.

The proposed system is implemented and fully evaluated with real-world video traces, including

the Bellevue Traffic [3] and UA-DETRAC datasets [50]. Mean average precision (mAP) is used as

the evaluation metric, and the experiment results suggest up to 28.6% absolute mAP gain over alter-

native solutions on object detection tasks, proving the effectiveness of the proposed cloud–edge

collaborative continuous learning approach on real-world scenarios. A comprehensive ablation

study is conducted to showcase the performance improvement achieved by each design compo-

nent separately.

The rest of the article is organized as follows. Section 2 provides preliminary experiment re-

sults that motivate the study. Section 3 details the system design and implementation. Section 4

presents the evaluation results. Section 5 presents related works, and Section 7 concludes the

article.
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2 MOTIVATION

2.1 Benefit of Cloud–Edge Collaborative Continuous Learning

As Figure 1 illustrates, the three-layer cloud–edge collaborative architecture contains a cloud cen-

ter connected with many edge servers, each connected to multiple video sources. Each edge server

and its corresponding video sources are geo-colocated and connected with bandwidth-sufficient

LAN, e.g., Gigabit Ethernet, while between edge servers and the cloud are WAN links with limited

bandwidth, e.g., 4G or 5G cellular networks. During inference, an edge server maintains one light-

weight DNN model for each connected video source and at the same time uploads video frames

as training data for retraining its DNN models on the cloud. The retraining process for each video

stream takes place periodically in retraining windows on the cloud, where the frames collected from

the previous retraining window are labeled by a golden model maintained at the cloud and used

to retrain the corresponding lightweight model. Each retrained model is thereafter downloaded to

the edge server and used for future inference tasks.

With the computation and network resource constraints, video frames are downsampled, i.e.,

filtered, from the stream both for supplying to inference models at edge servers as well as uploading

to the cloud for model retraining. In our design, two frame rates are used as the knobs for frame

filtering, referred to as inference frame rate and retraining frame rate, according to which frames

are uniformly sampled before inference and uploading. The inference frame rate of one stream

corresponds to its computation cost incurred at the edge, and the retraining frame rate of one

stream corresponds to the network resources on the cloud–edge link it consumes.

To demonstrate the benefit of combining edge inference and cloud-assisted continuous learning,

we compare the approach with two straightforward alternatives, namely edge-based inference

and cloud-based inference. For edge-based inference, video frames are processed by a lightweight

object detection DNN, SSDLite with a MobileNetV2 backbone. For the cloud inference, frames are

streamed to the cloud and inferred by a complex DNN, Faster-RCNN with a ResNet101 backbone.

Both models are pre-trained on the COCO dataset [25]. For the continuous learning approach,

video frames are processed at edge servers using SSDLite models, which are retrained every 20

seconds using pseudo-labels generated by the Faster-RCNN model on the cloud. To conduct the

measurement, 20 video streams are selected from UA-DETRAC dataset and are allocated across two

servers. The same inference and retraining frame rates are assigned to all streams, and hence both

computation and network resources are equally shared. The inference accuracy of each stream

is represented by mAP, and the average mAP across all streams is used to represent the overall

performance of the system.

Figure 2 compares the achieved mAP of the cloud–edge collaborative approach with the edge-

based as well as cloud-based approaches, respectively. Figure 2(a) gives the average mAP with

solely edge-based inference and that of cloud–edge collaboration with an average bandwidth of

5 Mbps per stream. So 20 video streams consume 100 Mbps of uplink bandwidth in total. Compu-

tation resources on each edge server are denoted as the total inference frame rate ranging from

50 to 250 FPS, meaning how many frames the edge can process in each second with the light-

weight model (SSLite in this case). Experiment results show that the continuous learning approach

achieves a significant mAP gain even under relatively constrained bandwidth. With the total in-

ference frame rate capped at 150 FPS on edge and a typical 100 Mbps 4G LTE cellular link[9],

cloud–edge collaborative continuous learning can achieve up to 5.7% mAP gain compared with

edge-based inference. The results indicate that periodical retraining and update can well alleviate

the model degradation caused by concept drift compared with using a fixed model.

Figure 2(b) illustrates the average mAP with solely cloud-based inference and edge inference

with cloud-assisted continuous learning with the total inference frame rate of each edge at 150
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Fig. 2. Performance comparison with (a) the edge-based approach and (b) the cloud-based approach.

FPS. Network resources are denoted as the total bandwidth on the cloud–edge links ranging from

0 to 200 Mbps, which is typical bandwidth of nowadays 5G uplinks [36]. With a low bandwidth,

e.g., 100 Mbps, few frames could be uploaded for cloud-based inference, resulting in mAP as low as

25.7%. However, the cloud–edge collaborative design achieves a much better accuracy with 18.6%

mAP gain. The rationale behind is that network resources have a higher utility when uploaded

frames are used to enhance edge models instead of for inference when the network bandwidth

is limited.

Compared with purely edge-based solution, one concern about cloud–edge collaboration is the

potential privacy violation, since it requires training data to be uploaded to cloud. However, some

existing solutions [5, 30, 53] have proposed privacy-preserving video streaming and analytics tech-

niques that adapt well to our cloud–edge collaborative architecture. Therefore, privacy issues are

not considered in this article but the system is compatible with such privacy-preserving designs.

2.2 Content Diversity

In the measurement above, the computation and network resources are equally allocated to all

video streams. However, video streams with varied content may have different sensitivities of in-

ference accuracy to resource variation, i.e., some video content may gain high accuracy when more

resources are allocated for the inference or model retraining while others may not, which we call

content diversity. For example, if a video stream only contains static scenes or objects of slow mo-

tion, then the variation of inference frame rate may not greatly affect its inference accuracy. In

other words, such a stream has a low sensitivity toward computation resource variation. Oppo-

sitely, a video stream containing high motions may be more sensitive to the inference frame rate,

and thus it has high sensitivity toward computation resource variation. Such diversity also applies

to network resources, since some streams experience larger concept drift and are more likely to

achieve accuracy gain from retraining online than others.

We perform trace-driven emulation with the same UA-DETRAC dataset. Figure 3(a) and (b)

demonstrate the spatial content diversity by selecting three different video streams and applying

different inference and retraining frame rates, respectively, on them. Figure 3(c) and (d) demon-

strate the temporal content diversity by selecting three different segments from the same stream

and applying different inference and retraining frame rates. Inconsistent slopes of polylines cor-

responding to different video streams or segments in the figures indicate different sensitivities

toward resource variation originated from content diversity, which exists not only spatially across

video streams but also temporally over time on the same stream. The observations motivate us

to explore such diversity to best allocate the limited computation and network resources to video

steams. We later use a term to quantitatively express the content diversity and use the quantified

diversity to guide resource allocation (Section 3.2).
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Fig. 3. The achieved mAP spatially across different video streams with varied (a) computation and (b) net-

work resources and temporally across different segments from the same stream with varied (c) computation

and (d) network resources.

Fig. 4. Overall system architecture.

3 SYSTEM DESIGN

3.1 Overview

In the proposed cloud–edge collaborative architecture shown in Figure 4, all edge servers con-

nected with the cloud form a set E. Each edge server e ∈ E is connected with a set of video

sources and processes their video streams Se . All video frames captured at end devices can be fully

streamed to the edge.

Key components on each edge server include a frame scheduler, an inference engine, and an in-

ference model pool. Each edge server e maintains an inference model pool, containing lightweight

models paired with every connected video stream s ∈ Se . Besides, the edge server maintains a

frame scheduler that schedules all video frames streamed from each source either to feed into the
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inference engine for inference or upload to the cloud for retraining the edge model according to

its configuration. As stated previously in Section 2.1, the configuration of a stream consists of two

knobs, namely inference frame rate and retraining frame rate. Frames are uniformly sampled, i.e.,

filtered, for inference and uploading according to inference and retraining frame rate, respectively.

The frame scheduler uses a weighted round robin (WRR) algorithm [6] to schedule the frames

of each stream to control network and GPU utilization so that the resource consumption of each

stream follows the allocated amount (Section 3.4).

Key components on the cloud include a golden model, a retraining model pool, and a resource

allocator. In the retraining model pool, a copy of the edge DNN model for each video stream

s ∈ S is stored. Upon arrival, frames uploaded to the cloud are first supplied to a golden model

to generate training labels. Retraining is triggered periodically every T -second-long retraining

window. At the beginning of each retraining window, the edge model of each stream is fetched

from the pool and retrained with most recently uploaded frames from the previous window. During

retraining, the resource allocator monitors the validation accuracy, based on which it generates the

resource allocation plan and corresponding frame rate configurations for the edge frame scheduler

(Section 3.2). Besides, an aggregated model training approach is proposed to reduce the retraining

overhead (Section 3.3). Finally, retrained edge models and configurations are sent to the edge server.

Retrained edge models are stored in the inference model pool, and configured frame rates are

updated for the frame scheduler.

3.2 Resource Allocation

The proposed system aims at allocating the available computation and network resources across

multiple video streams. A set of discrete frame rates is used as a bridge between the inference

accuracy and resource consumption—each video stream is assigned a proper inference frame rate

and retraining frame rate that correspond to the GPU resources consumed at the edge server and

the network bandwidth used for sending data to the cloud, respectively. The aim is to achieve a

maximum average accuracy across all video streams under the constraint of the total computation

resources at the edge and network bandwidth on the cloud–edge links.

Problem formulation. In each retraining window i , the resource allocator needs to decide on

a combination of retraining frame rate ϕ and inference frame rate ω for each stream s ∈ S as

an allocation plan. The allocation target is to maximize the overall inference accuracy with the

resource usage not exceeding the computational constraint Ci
e and network constraint Ui , which

can be formulated as a discrete optimization problem defined in Equation (1). A complete set of

relevant notations is presented in Table 1.

arдmax
x s,i

ϕ
,ys,i

ω

∑

s ∈S

∑

ϕ ∈Φ,ω ∈Ω

xs,i−1
ϕ

ys,i
ω As

i (ϕ,ω)

s.t.
∑

e ∈E

∑

s ∈Se

xs,i (ϕ)Rn (ϕ) ≤ Ui

∀e ∈ E,
∑

s ∈Se

ys,i
ω Rc (ω) ≤ Ce

i .

(1)

Note that in retraining window i , edge models are retrained with training samples collected in

retraining window i − 1. So xs,i−1
ϕ

is used instead of xs,i
ϕ

when deriving the inference accuracy in

the ith retraining window in Equation (1).

An optimal solution for such a resource allocation problem can be obtained if we have perfect

knowledge about how each possible configuration (ϕ,ω) corresponds to the inference accuracy,

i.e., function As
i for every stream s and retraining window i . Then we can apply optimization
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Table 1. Mathematical Notations

Notation Description

T Duration of retraining window

E Set of edge servers

S Set of streams

Se Set of streams connected to edge server e

Ce
i Computation resource on edge e in window i

Ui Uplink network bandwidth in window i

Φ Set of available retraining frame rates

Ω Set of available inference frame rates

xs,i
ϕ

Binary. xϕsi = 1 indicates stream s uses retraining frame rate ϕ in window i

ys,i
ω Binary. yωsi = 1 indicates stream s uses inference frame rate ω in window i

Rn (ϕ) Network resource consumption by a stream with retraining frame rate ϕ

Rc (ω) Computation resource consumption by a stream with inference frame rate ϕ

As
i (ϕ,ω) Accuracy of stream s in window i with frame rates ϕ and ω

techniques for solving the multi-dimensional multi-choice knapsack problem such as dynamic

programming (DP). In practice, however, we may only obtain an estimation function Âs
i based

on probing the validation results in the previous retraining window online.

Besides, compared with solving traditional optimization problems where the computational

complexity measures the overall overhead, in our problem context the dominating overhead comes

from the number of times to trigger probing the function Âs
i , because each time when probing Âs

i a

complete DNN inference and result evaluation is invoked that is much more time-consuming than

other computational operations involved in solving conventional knapsack problems. The probing

cost incurred by DP grows linearly with the number of possible configurations (ϕ,ω) as well as

video streams S. Suppose the number of retraining frame rates ‖Φ‖, inference frame rates ‖Ω‖,
and video streams ‖S‖ arem, n, p, respectively, then the time dominating complexity of DP-based

online resource allocation is O (mnp), which indicates a large allocation overhead when there is a

large number of possible configurations and streams. Such overhead may lead to excessive compu-

tation resource consumption and large delay to execute the allocation algorithm, which negatively

affects the timeliness of configuration update.

Accuracy Gradient-based Resource Allocation (AGRA). AGRA is a pruning-based DFS

algorithm. Each unique path from the root to a leaf node in the search tree represents a possible

allocation plan. Different from applying general DP-based method, we explore a practical

observation, i.e., the resource-accuracy curves at both computation and network dimensions

are concave, as shown previously in Figure 2. We define the accuracy gradient as the amount of

accuracy variation with per unit of computation or network resource allocated to a video stream.

The accuracy gradient of computation (network) resources can be viewed as the first derivative of

accuracy function As
i on the inference (retraining) dimension. DFS is then performed to search for

an optimal allocation plan. Leveraging the concave observation, at each branch (non-leaf) node of

the search tree, we may use accuracy gradient and linear programming relaxation [42] to derive

an upper bound accuracy for the pending allocation plan corresponding to the node. A pending

plan is found not optimal if its upper bound accuracy is lower than that of the best allocation plan

identified so far. With such a guarantee, the allocation plan can be early pruned without reaching

any leaf node of the search tree, reducing the total number of pruning.
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Fig. 5. The achieved mAP with varied computation and network resources.

In addition, we observe that the computation and network resource affections to the inference

accuracy are not highly entangled. Figure 5 demonstrates the inference accuracy after retrain-

ing with varied computation and network resources in a three-dimensional (3D) format using the

same setting as Section 2.1. It shows that the inference accuracy increases monotonically with both

computation resources and networks. This observed relationship facilitates the decomposition of

the two-dimensional allocation problem into two separate one-dimensional problems without en-

countering local optima. Such a decomposition avoids jointly allocating network and computation

resources and reduces complexity. We first determine the retraining frame rate for each stream

assuming a fixed inference frame rate and then determine the inference frame rate after the re-

training frame rate is fixed. With the above two heuristics, we may reduce the probing overhead

to O ((m + n)p) with a small constant on average and O (p) at the best case, which greatly reduces

online allocation overhead and improves the timeliness for configuration update.

Next, we first use examples to illustrate how the estimation function Âs
i can be probed online

for both retraining and inference frame rate. We then present the complete AGRA algorithm with

pseudo codes and a detailed explanation.

Probing ˆAs
i for retraining frame rate ϕ. Figure 6 illustrates how Âs

i is probed with different

retraining frame rates, which correspond to the network resources allocated across video streams.

Suppose a total ofm candidate retraining frame rates form a finite set
{
ϕ1, · · · ,ϕm

}
and are ordered

by their network bandwidth consumption, i.e.,∀i, j, i > j ⇒ Rn (ϕi ) > Rn

(
ϕ j

)
. At the beginning of

retraining window i , for one specific video stream s , the cloud receives the frames sampled at the

retraining frame rate during the previous window. Suppose the previously used retraining frame

rate is ϕk . The training frames are split into a downsampled set and an incremental set, where the

downsampled set contains frames sampled at a lower frame rate ϕk−1, and the rest of the frames

form the incremental set. The downsampled set is first used to retrain the lightweight model, which

is thereafter tested on a validation set and yields a validation accuracy Âs
i (∗,ϕk−1), which gives

the estimation of test accuracy using retraining frame rate ϕk−1. Here the asterisk represents a

certain inference frame rate used for the model. The incremental set is then fed to the retrained

model to generate a new model retrained using the full training dataset, from which Âs
i (∗,ϕk )

is estimated. Instead of training the model every time from scratch, by recursively splitting the

original training set into downsampled sets and incremental sets multiple rounds and training the

edge model incrementally, the estimated test accuracy accuracies with different retraining frame

rates can be probed with amortized overhead.
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14:10 Y. Nan et al.

Fig. 6. Probing Âs
i for retraining frame rate ϕ.

Fig. 7. Probing Âs
i for inference frame rate ω.

For validation, an extra set with a fixed number of consecutive frames at the beginning of the

retraining window with the original frame rate is conveyed to the cloud as the validation dataset.

In practice, we find that a validation set lasting for ∼2 seconds is sufficient to produce accurate

validation results, and the associated network bandwidth consumption is negligible.

Probing ˆAs
i for inference frame rateω. Figure 7 illustrates how Âs

i is probed with different in-

ference frame rates, which correspond to the computation resources allocated across video streams.

A total number of n candidate inference frame rates form a finite set {ω1, · · · ,ωn } and are ordered

by their resource demand. At the beginning of retraining window i , for a certain stream s , after

the retraining frame rate ϕ is decided and the retrained model is obtained, the validation dataset

is fed to the retrained model to obtain the inference results. We can derive the inference accuracy

obtained with the highest inference frame rate Âs
i (ωn ,ϕ) by comparing inference results with the

pseudo-labels. The inference results are then uniformly downsampled to a lower frame rate, i.e.,

a proportion of inference results are dropped and padded with results from previous frames. The

downsampled results are compared with the pseudo-labels to yield an inference accuracy corre-

sponding to Âs
i (ωn−1,ϕ). By gradually downsampling the inference results at multiple levels, the

inference accuracies with different inference frame rates are estimated.

AGRA algorithm. Algorithm 1 describes the detailed AGRA procedure. The resource monitor

on each edge server proactively measures the available GPU and uplink bandwidth resources

and periodically synchronizes its measurements with the cloud. On the cloud, the overall uplink

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 14. Publication date: October 2023.
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network bandwidthU is allocated across multiple video streams (line 2). After the retraining frame

rates (i.e., network bandwidth allocation) are decided, for each edge server e , its computation

resources Ce are allocated across video streams associated with it (line 4).

DFS is adopted to allocate the resources. A path from the root to a leaf node in the DFS tree

represents a complete allocation plan where the frame rates of all streams are decided. Meanwhile,

a path from the root to a branch node represents a pending allocation plan where the frame rates

of part of streams are not decided. Starting from the root, when reaching a node on the ith layer

of the search tree, the frame rate of the ith stream participating in the allocation is to be decided.

So the DFS tree for the resource allocation problem of m streams and n candidate frame rates has

m layers, each branch node with n children.

On searching each node (lines 6–19), S represents a set of streams whose frame rates are not

decided, resCurr represents the amount of remaining resources, accCurr represents the overall

accuracy of settled video streams, and accBest records the best overall accuracy achieved so far.

When visiting a leaf node (line 8), a complete allocation plan is obtained and the current overall

accuracy is directly returned. Otherwise, when visiting a branch node and at least one complete

allocation plan has been found whose overall accuracy stored in accBest (line 9), an estimation

function is used to estimate the upper bound of the overall accuracy of all unsettled streams at

the current branch node. The branch can be confidently pruned without visiting its children if

the estimated upper bound is still lower than previously recorded accBest accuracy (line 10). Oth-

erwise, one video stream is selected and tried with all candidate frame rates, which generates

multiple downsized problems with one less unsettled streams. The downsized problems are then

solved recursively (lines 11–19), going one layer deeper in the search tree. Note that function to

get resource consumption from configuration (line 13) is Rn and Rc when taking in retraining and

inference frame rates, respectively.

The bound function takes in a set of streams and the amount of resource and produces the

upper bound of the overall accuracy of those streams (lines 20–30). Accuracy gradient is derived

by GRAD function (line 23) using the probing results described above. Mathematically, the gradient

of a stream s in windows i for retraining frame rate ϕk can be estimated as follows:

GRADnet
s,i (ϕk ) =

Âs
i (ϕk ,ωn ) − Âs

i (ϕk−1,ωn )

Rn (ϕk ) − Rn (ϕk−1)
. (2)

The accuracy gradient of a stream s in windows i for inference frame rate ωk can be estimated

as follows:

GRADcom
s,i (ωk ) =

Âs
i (ϕ,ωk ) − Âs

i (ϕ,ωk−1)

Rc (ωk ) − Rc (ωk−1)
. (3)

When deriving the accuracy upper bound, all streams start with the lowest frame rate and calcu-

late corresponding accuracy gradients (line 23). The resources are thereafter repeatedly allocated

to the stream with the highest gradient with linear relaxation until all resources are allocated

(lines 24–29).

Theoretically, if the resource-accuracy curve is concave, then the accuracy gradient always de-

creases monotonically with the amount of allocated resources, then the bound function is guar-

anteed to provide an upper bound of a pending allocation plan. The upper bound can be used

for pruning branches to avoid unnecessary probing over the entire search tree, leading to a much

smaller constant factor in its complexity. In addition to that, AGRA further avoids joint allocation

of network and computation resources by separately determining the retraining and inference

frame rates. Such decomposition reduces the search space from O (mnp) to O ((m + n)p).
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ALGORITHM 1: Accuracy gradient-based resource allocation.

input : network bandwidth U , computation resources {Ce |e ∈ E}
a set of streams S, retraining configurations Φ, inference configurations Ω

output : retraining frame rates for each stream retCgfs, inference frame rates for each stream infCfgs

1 retCgfs, infCfgs← { }, { }
2 dfs(S, U , 0, 0, retCgfs, Φ) // allocate network bandwidth

3 for e ∈ E do

4 dfs(Se , Ce , 0, 0, infCfgs, Ω) // allocate computation resources on each edge

5 return retCgfs, infCfgs

6 Function dfs(S , resCurr , accCurr , accBest , c f дResults , c f дSet)
7 if S = ∅ then

8 return accCurr // all streams settled, return current accuracy

9 if accBest > 0 && accCurr + get_bound(S , resCurr , c f дSet) < accBest then

10 return accBest // current upper bound worse than historical best, prune

11 forall the c f д ∈ c f дCandidates do

12 if cfg_to_res(c f д) < resCurr then

// pick one configuration for the current stream

13 accNext ← accCurr + probe_accuracy(S[1], c f д)

14 resNext ← res_curr − cfg_to_res(c f д)

15 SNext ← S \ {S[1]}
// recursively solve with one less stream

16 accOverall ←dfs(SNext , resNext , accNext , accBest , c f дResults , c f дSet)

17 if accOverall > accBest then

18 accBest ← accOverall // update historical best if necessary

19 c f дResults[S[1]]← c f д

20 Function get_bound(S , res , c f дSet)
21 accOverall , indices , дrads ← 0, { }, { }
22 for s ∈ S do

// all streams start with the lowest configuration

23 indices[s], дrads[s]← 1, get_grad(s , indices[s])

24 while res > 0 do

25 sort(S , key = дrads , order = descend) // sort by accuracy gradient

26 s , Δ← S[1], cfg_to_res(c f дSet[indices[s] + 1]) − cfg_to_res(c f дSet[indices[s]])

// get accuracy upper bound with linear relaxation

27 accOverall ← accOverall + min(res , Δ) × дrads[s]
28 res , indices[s]← res − Δ, indices[s] + 1

29 дrads[s]←get_grad(s , indices[s])

30 return accOverall

3.3 Aggregated Model Training

Though the computation resources on the cloud are assumed ample for retraining all edge models,

model retraining can still be time-consuming and computationally demanding when the system

scales in practice (i.e., tens of hundreds of edge servers each with many video streams). The re-

training cost may impair the timeliness of retrained models to be deployed at the edge. The overall
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Fig. 8. Aggregated model training for a DNN model composed of backbone and head.

retraining cost on the cloud would grow linearly with the total number of video streams if each

model is individually retrained.

To tackle such a problem, we take advantage of the fact that most modern DNN models can

be split into a feature extraction backbone and a task-specific head [29, 44], where the former is

generally much more complicated than the latter and training it contributes to the major part of

training cost. Meanwhile, the feature distribution of a video stream shows less data drift compared

with task-specific content [4, 14, 57], suggesting that the backbone tends to remain relatively stable

over time. With such an observation, we choose to retrain the head and backbone of an edge model

separately to reduce training cost. In such an approach, the model head is retrained and updated

in every retraining window, while model backbone is retrained every k windows (k > 1). We use

aggregation length to refer to the parameter k . Such an approach reduces training cost by training

model backbone at a lower frequency.

In addition, we leverage the spatial correlation of video content distributions across geograph-

ically colocated video streams. In our setting, each edge server is regional and multiple video

sources connected to the same edge servers are geo-colocated so their video content share similar

feature distributions, e.g., lighting condition and motion. Such an assumption has been adopted

and proven valid in existing works [19]. Meanwhile, the difference of data distribution across indi-

vidual video streams is generally reflected by task-specific heads. Accordingly, our design retrains

a common backbone shared across multiple geo-colocated streams, while each stream individually

retrains its personalized head. The design ensures that only one model backbone is maintained at

each edge server, and the overall retraining cost is constrained by the number of edge servers,

instead of growing indefinitely with the number of video streams. The aggregated training set is

downsampled to a fixed size to ensure unified resource consumption across different edge servers

and retraining windows.

Figure 8 illustrates the detailed process of aggregated model training. Suppose n streams are

connected to one edge server. The edge models of each stream share a common backbone and

have individual heads. Only one of such models is illustrated in the figure. Generally, in each

retraining window, the model backbone is frozen and only the task-specific head of each edge

model is retrained individually using frames sampled from its corresponding stream, shown as

1©. Every k retraining windows, aggregated retraining is triggered to update the model backbone

of all edge models. When training a shared model backbone, the training datasets are aggregated

not only from the past k windows (temporal aggregation) but also from the n streams of the same

edge server (spatial aggregation). The aggregated training set is denoted as the dashed rectangle

in the figure. Note that such aggregated training, shown as 2©, only takes place once across n
streams, after which the updated backbone is shared to all streams. Finally, the system resumes
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general training with the backbone frozen and each stream uses its individual training set from

the previous window to retrain its personalized head.

3.4 Implementation Details

We provide other implementation details in this section.

Network and GPU utilization. The frame scheduler on an edge server maintains one

individual inference queue and upload queue for each stream. When a frame arrives at the edge

server, it is duplicated and stored in both queues. Frames are taken from the two queues in

sequence and supplied to the edge model for inference or to the network interface for uploading

to the cloud, respectively. The frame scheduler uses WRR algorithm to iteratively select frames

from each stream’s queue, where the weight assigned to each upload (inference) queue in WRR

is proportional to the retraining (inference) frame rate of the corresponding stream. The WRR

scheduler ensures that the computation and network resource consumption of each video stream

is exactly the allocated amount so there is no need for explicit low-level resource management,

e.g., hardware virtualization.

Pipelined model download. Transmitting multiple models from the cloud to the edge servers

incurs high downlink bandwidth usage, which may cause network congestion and also reduce

the timeliness of retrained model update. A pipelined model download technique is adopted to

determine a proper retraining window duration and arrange model retraining and delivery of

individual streams in a pipelined manner, so the downlink bandwidth is best utilized to avoid

congestion. When pipelining the model download, it is ensured that only one edge model takes

the full downlink bandwidth at a time, because sequential transmission provides better timeliness—

only completely downloaded model can take effect for later inference. The desired duration of the

retraining window T is equal to the product of the number of streams and the delay of model

download. The downlink bandwidth can be measured during runtime to adjust T dynamically.

Adaptive strategy. Due to the complexity of online scenarios and the diversity of video con-

tent, neither continuous learning nor model aggregation is guaranteed to achieve better model

performance. Inference accuracy after retraining may decrease if data from consecutive retraining

windows or geo-colocated streams do not have a strong correlation. We apply an adaptive strategy

to avoid possible performance degradation caused by model training. Instead of straightforward

replacing models with retrained ones at the edge server, our system constantly monitors the vali-

dation accuracy of retrained models during aggregated model training. When the system observes

decreasing post-retraining accuracy, it will drop the retrained model instead of updating it to the

inference model pool, which ensures the stability and robustness.

Video compression. One option when streaming the video frames to the cloud is to compress

frames into video, e.g., with H.264 [40] or VP8 [2]. Our observation in practice, however, suggests

that the network traffic reduction does not benefit much from temporal compression, mainly due

to the fact that the retraining frame rate is already very low. However, video compression may

introduce additional content distortion as well as incur extra computation cost at the edge. After

careful consideration, we choose to upload original frames without compression, but leave the

system open for such alternatives.

Compatibility with other models, metrics, and tasks. Our system allows the use of other

models, metrics, and tasks in addition to the ones used in motivation and evaluation as long as

they follow the input and output of the system, i.e., the DNN model takes frames as input and

produces inference results, and the evaluation metric takes in inference results and yields a value

representing inference accuracy. For example, we can use more state-of-the-art models such as the

ones with deep layer aggregation [58] and mean intersection over union as the evaluation metric.

We make these components modifiable as user-defined plugins.
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4 EVALUATION

In this section, the overall performance improvement of the proposed system is demonstrated

with end-to-end experiments. Breakdown experiments are then performed to examine how design

components contribute to such improvement.

4.1 Experiment Setting

Testbed. The proposed framework is implemented using Golang. Roles including video sources,

edge servers, and the cloud are implemented as stand-alone processes and communicate using the

Google Remote Procedure Call protocol. MMDetection [7], an object detection framework built

upon PyTorch [37], is used for DNN inference and model retraining. Hyperparameters used for

retraining and inference are specified by default configuration files in MMDetection, except that

the number of training epochs is fixed to 40.

Edge servers are equipped with Nvidia Tesla T4 GPUs for inference, and the cloud uses Nvidia

GeForce RTX3090 GPUs for retraining and generating training labels. The network connection

between the cloud and edge is based on a 100 Mbps WAN link. Besides, we also implement a

software-based resource emulator that can limit the computation resource and network bandwidth

to a user-specified amount, allowing us to test the system performance with finer resource granu-

larity.

Datasets. Bellevue Traffic and UA-DETRAC datasets are used to emulate the video input. During

preprocessing, video traces from Bellevue Traffic dataset are truncated into multiple 1-hour-long

sequences. For the UA-DETRAC dataset, since its video streams are already truncated, we assemble

them into multiple 4-minute-long sequences.

Task and model selection. Object detection is used as a vehicle DNN task to study the system

performance. Faster-RCNN with a ResNet101 backbone is used as the golden model on the cloud,

and SSDLite with a MobileNetV2 backbone is used as lightweight models deployed at edge servers.

We use hard labels generated by the golden model with a threshold of 0.5. Both models are pre-

trained on the COCO dataset. Average mAP over all streams is used as the accuracy metric.

4.2 End-to-end Study

We compare the proposed system with three baseline approaches, namely (1) edge-based inference,

where video streams are solely processed at edge servers [46], (2) cloud-based inference, where

video streams are streamed to and processed on the cloud [11], and (3) hybrid inference, which

combines the above two, sending frames that are hard to infer to cloud while keeping the rest

processed at edge servers [16]. To give hybrid inference the benefit, an oracle obtained offline

is used for frame selection, i.e., the system always selects a set of frames to be uploaded to the

cloud that yields the maximum accuracy improvement, representing the accuracy upper bound

for hybrid inference.

Apart from the three baselines described above, we also consider Ekya [3], an alternative that

also leverages continuous learning but conducts both model retraining and inference solely at the

edge. However, we find that resource contention among inference, retraining, and label generation

on computation-constrained edge servers leads to excessive training delay that is even longer than

the retraining window, making it hard to accommodate such a solution with typical edge server

hardwares.

We start with experimenting edge servers each connected with 10 concurrent streams and vary

the available computation resource on each edge server as well as network bandwidth on edge–

cloud links. Figure 9 presents the results. The computation resource at edge servers is indicated by

the total inference frame rate. Figure 9(a) gives the achieved mAP with the UA-DETRAC dataset.
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Fig. 9. Inference accuracy of different approaches with varied computation or network resource.

The edge server’s total inference frame rate is varied from 50 to 250 FPS with fixed edge–cloud

bandwidth at 50 Mbps (left figure), and then the edge–cloud bandwidth is varied from 20 to 100

Mbps with fixed edge computation resource at 100 FPS (right figure). Figure 9(b) shows the same

set of results when the Bellevue Traffic dataset is used. The experimental results show that the

performance of the proposed system grows monotonically with computation and network re-

sources, which consistently outperforms all baselines under different resource bottlenecks. On

the UA-DETRAC dataset, the cloud–edge collaborative design achieves up to 12.5%, 25.7%, and

4.8% mAP gain compared with edge-based, cloud-based, and hybrid inference, respectively, while

on the Bellevue Traffic dataset these gains are 26.4%, 28.6%, and 22.3%.

Such results quantify how the proposed system benefits from cloud–edge collaborative contin-

uous learning. On the one hand, when the network bandwidth is constrained, our approach gains

higher network utility when using the uploaded frames as training samples rather than directly

using them for cloud-side inference. On the other hand, the system can consistently improve the

performance of lightweight models at the edge without introducing additional computation over-

head. Note that each video sequence lasts 4 minutes in the UA-DETRAC dataset and 1 hour in

Bellevue Traffic. The improved performance of our system on both datasets demonstrates the ef-

fectiveness of the continuous learning approach. This approach enhances model accuracy across

various timescales, from short intervals that encompass several retraining windows to prolonged

video streams.

We test the system scalability by increasing the number of video streams with constrained com-

putation and network resources, i.e., with two edge servers capped with 100 FPS processing power

and the network link capped with 50 Mbps bandwidth. Figure 10(a) presents the inference accuracy

of the proposed approach in comparison with baselines. With the increased number of concurrent

streams, we see all approaches experience throttled performance while the proposed system ex-

hibits a consistent advantage over baselines with up to 26.4% mAP gain, which indicates high

scalability of our system in servicing large-scale applications. Figure 10(b) presents the CDF of

achieved mAPs across the 60 individual video streams with the proposed cloud–edge collabora-

tive approach. We see balanced performance over all streams—over 95% of the streams have an
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Fig. 10. (a) Inference accuracy of different approaches with a varied number of concurrent streams. (b) The

CDF of achieved mAPs across 60 video streams.

Fig. 11. Comparison with even and oracle schemes with different computation and network bottlenecks.

mAP within the range of two standard deviations around the average, and all streams are within

three standard deviations. No particular stream suffers performance degradation due to persistent

resource starvation.

4.3 Breakdown Study

Resource allocation. We evaluate the effectiveness of our resource allocation approach (AGRA),

compared with two alternatives: (1) even, where the system allocates computation and network

resource evenly across all streams, and (2) oracle, where the system is assumed having the complete

knowledge about how the allocated resources correspond to inference accuracies and allocates the

resources with DP algorithm. The oracle scheme gives the theoretical upper bound gain of resource

allocation and is practically impossible.

Figure 11 summarizes the achieved average mAP over all streams when different resource alloca-

tion schemes are used. In the experiment, 10 video streams are selected from UA-DETRAC dataset

and placed at one edge server with varied total inference frame rate ranging from 50 to 250 FPS.

When the network resource is more constrained (e.g., in Figure 11(a) where the average bandwidth

per stream is 1 Mbps), oracle allocation achieves up to 8.0% mAP gain on average compared with

even allocation. Meanwhile, AGRA achieves up to 6.0% mAP gain and consistently outperforms

even allocation with varied computation resource bottleneck, which indicates AGRA, though not

optimal, can be very close to oracle allocation and achieves non-trivial accuracy gain. When the

network resource increases to 1.5 Mbps per stream in Figure 11(b), the performance gain of both

oracle and AGRA over even allocation becomes slimmer, i.e., 4.2% mAP gain for oracle and 3.5%

for AGRA. The reason is that the marginal gain from model retraining gradually diminishes with

retraining frame rate, which makes both oracle and AGRA eventually converge to even allocation.
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Table 2. The Cost of Resource Allocation When Different Schemes Are Used

Number of streams
Average cost per stream per window (s)

DP DP-split AGRA

5 27.53 12.52 9.01

10 27.58 12.51 7.23

50 27.57 12.53 5.12

100 27.59 12.52 4.82

We also evaluate the cost of our resource allocation scheme. We compare AGRA with two alter-

natives: (1) DP, the dynamic programming approach on 2D profile matrix without pruning, and (2)

DP-split, which also uses dynamic programming but splits the 2D allocation problem to two 1D

problems and allocates network and computation resources separately.

Table 2 presents the cost of online allocation measured as the average operation time per video

stream per retraining window. The computation resource is fixed to a total inference frame rate

of 100 FPS, and the network bandwidth is fixed to 100 Mbps. The number of concurrent video

streams for resource allocation is varied from 5 to 100. The measured results show that the average

online allocation cost of both DP and DP-split is constant with an increasing number of streams,

suggesting a linear growth of the total cost when the system scales up with more streams. However,

with the proposed pruning-based DFS approach, the amortized cost of AGRA gradually decreases

with up to 5.7× speed-up. This is because when there are more streams, the DFS tree becomes

shallower and an optimal allocation plan can be found with less probing, leading to more branches

pruned, which makes AGRA scalable with the growth of the number of streams.

Aggregated model training. We perform experiments to demonstrate how aggregated model

training can reduce online training cost at a small cost of inference accuracy. We pick 16 video

streams from UA-DETRAC dataset and allocate them across 4 edge servers based on camera loca-

tions. The size of spatial aggregation is fixed to 4 (1 for each edge server). The temporal aggregation

length k is varied from 1 to 4. We compare the achieved average mAP and training cost with com-

mon retraining technique that does not use aggregation.

Table 3 summarizes the average accuracy and the cost of model retraining amortized across

the streams and retraining windows. The experiment is performed with two network bandwidth

settings, i.e., an average uplink bandwidth of 1 and 2 Mbps per stream, respectively. The results

show that aggregated model training significantly reduces the online retraining cost. The gain gets

larger with temporal aggregation applied across more retraining windows (when k is increased

from 1 to 4). When the average uplink bandwidth is set to 1 Mbps, aggregated and non-aggregated

training achieve similar mAP. With a larger uplink bandwidth (2 Mbps per stream), the aggregated

training approach may lead to slight drop of mAP (by 4% at most) but reduce up to 68.8% training

cost. In our prototype implementation, we choose k = 2 to achieve a balanced tradeoff between

accuracy and training cost.

5 RELATED WORK

Distributed video analytics. Distributed video analytics is a common way to improve system

scalability. Existing studies aim at splitting a task either into multiple stages of a processing

pipeline [13, 16, 27, 61] or parallel subtasks [20, 47, 63] and distributing them across machines.

Among those studies, EdgeDuet [47] specifically adopts an edge-end collaborative design where

hard data samples are offloaded to a powerful edge server while easy ones are kept at the end de-

vice for local processing. In such a parallel offloading setting, the cloud or edge servers are treated
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Table 3. Accuracy and Training Cost with and without

Aggregated Model Training

Avg. bandwidth 1 Mbps Avg. bandwidth 2 Mbps

Cost (s) mAP (%) Cost (s) mAP (%)

w/o agg. 23.80 30.9 47.77 37.0

w/ spatial agg. & temporal agg. (of length k)

k = 1 12.99 29.5 26.10 36.3

k = 2 9.26 30.1 18.37 35.5

k = 3 8.12 30.2 16.05 34.6

k = 4 7.59 29.7 14.90 33.0

as simple extension of computation capability. In our design, the cloud plays the role of retraining

edge models to ensure the inference accuracy.

Continuous learning. Continuous learning aims at tackling the problem of concept drift.

Continuous learning approaches have been adopted in existing video analytics designs to refine

DNN models continuously online [10, 12, 26, 34, 41]. Most existing designs, however, mainly fo-

cus on training techniques without considering systematic design issues such as multi-stream

resource contention. Ekya [3] proposes a continuous learning framework, which, however, builds

both model inference and retraining at the edge server. Without the cloud–edge collaboration,

the design is essentially limited by available computation resources at the edge. This article in-

tegrates existing continuous learning rationale into the cloud–edge collaborative architecture

with system implementation and addresses specific challenges involved in resource allocation and

management.

Cloud–edge learning systems. Some learning systems adopt a cloud–edge collaborative ar-

chitecture [15, 18]. In such configurations, a learning task is divided into multiple steps, with a por-

tion being offloaded to the edge. Edge servers typically manage steps that are less computationally

demanding, such as data retrieval and preprocessing. This design leads to decreased uplink data

transmission and enhanced resource efficiency, especially when compared to cloud-only learning

systems. Moreover, cloud–edge learning systems can integrate with federated learning [28, 54, 56].

In this scenario, edge servers preprocess data to bolster privacy and anonymity prior to its trans-

mission to the cloud. While much of the existing research on cloud–edge systems explores the

use of edge computing for efficient or privacy-focused training task execution, our system focuses

on video analysis, where the emphasis is on model inference with training primarily serving to

improve the accuracy of lightweight models deployed at edge servers.

Dynamic configurations. Many video analytics systems support adapting configurations dy-

namically in an online manner [1, 11, 19, 21, 22, 24, 46, 62]. Such adaptation aims at achieving a

desired tradeoff between inference accuracy and resource consumption by choosing a proper con-

figuration, which can be spatial (resolution), temporal (frame rate), or model related (specific model

settings). Most existing works, however, only consider computation resources on inference servers

and focus on a single-stream scenario, where resource competition and multi-stream diversity are

largely neglected. This article considers dynamic configurations within a cloud–edge collaborative

system and adapts both the inference and retraining configurations for resource allocation.

6 DISCUSSION

Quantization and model pruning. Edge servers face computational resource limitations, mak-

ing it challenging to run complex DNN models. To address this, two model compression techniques
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are introduced, i.e., quantization [17, 38] and model pruning[23, 33]. In the quantization method,

model parameters are represented using lower precision formats. Meanwhile, model pruning dis-

cards parameters that have minimal impact on inference. Both methods aim to decrease the model’s

size and computation cost, allowing the model to better fit edge hardware constraints. In our sys-

tem, the method for deriving the lightweight model at edge servers is not specified. In experiments,

SSDLite with a MobileNetV2 backbone without any quantization or model pruning is used and un-

dergoes conventional training procedures. However, when a lightweight model is derived from

a compressed version of a complex model, specific training techniques designed for such com-

pressed models, e.g., quantization-aware training [43], can be incorporated in the retraining phase

to optimize continuous learning.

Usage in wireless scenarios. In our setting, the uplink bandwidth between edge servers and

the cloud is relatively consistent over time. However, when edge servers utilize wireless access

networks to connect to the cloud, several issues emerge. The primary concern is the simultaneous

connection of multiple edge servers, which, combined with the natural interference of wireless

signals, can cause significant fluctuations in wireless bandwidth. This variability can compromise

the accuracy of the resource monitor in our system, leading to potential misestimations of available

network resources in subsequent retraining windows, thereby negatively affecting the decision

of the resource allocator. This issue can be addressed at the physical layer by mitigating Wi-Fi

or cellular interference [35, 65] or at the transport layer by implementing bandwidth prediction

algorithms tailored for wireless networks [52, 60]. Further exploration of these solutions is reserved

for future research.

7 CONCLUSION

In this article, we present a systematic design of a video analytics framework with cloud–edge

collaborative continuous learning. The resource allocator of the system manages frame rate selec-

tion for multiple streams to utilize limited computation and network resources. The aggregated

model training technique saves computation resource consumption for retraining. Evaluation re-

sults show the system can achieve up to 28.6% absolute mAP gain on object detection tasks. We

conclude the system is effective for real-world applications.
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