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Abstract—Diffusion models have revolutionized image synthesis applications. Many studies focus on using approximate computation
such as model quantization to reduce inference costs on mobile devices. However, due to their extensive model parameters and
autoregressive inference fashion, the overhead of diffusion models remains high, which is challenging for mobile devices to handle. To
reduce the inference overhead of diffusion models on mobile devices, we propose LUT-Diff, an algorithm-system co-design specifically
tailored for mobile device diffusion model inference optimization. LUT-Diff optimizes using lookup tables and can efficiently generate a
series of lookup table candidates for diffusion models without end-to-end training. During inference, LUT-Diff adaptively selects the
best inference strategy based on the application/user’s latency budget. Additionally, LUT-Diff includes a parallel inference engine that
rapidly completes model inference through CPU-GPU co-scheduling. Extensive experiments demonstrate that LUT-Diff can generate
images comparable to the original model, with an up to 0.012 MSE in generated images. LUT-Diff can also achieve up to 9.1×
inference acceleration and reduce the inference memory footprint by up to 70.9% compared to baseline methods. Moreover, LUT-Diff
can save at least 3281× the learning cost of lookup tables.

Index Terms—Deep learning, diffusion model, lookup table

✦

1 INTRODUCTION

Diffusion models [1], [2], [3] have achieved remarkable
success in image synthesis, vital for a spectrum of mobile
applications from real-time photo editing to personalized
content creation. The need to deploy these advanced models
directly on mobile devices is increasingly critical, driven by
the demand for instant processing, enhanced user privacy,
personalized digital experiences, and improved functionality
of mobile applications by enabling sophisticated image
generation capabilities on the go [4], [5], [6]. However,
adapting diffusion models for mobile deployment presents
significant challenges due to their extensive resource de-
mands. To address these issues, researchers have explored
several approximation computation techniques, such as
model quantization [7], [8], [9], [10], by using low-precision
data to approximate floating-point computations, which
trades accuracy for improved inference efficiency.

Despite these advancements in approximation methods,
such as quantizing models to int8 precision [9], [7], diffusion
models remain exceedingly burdensome for mobile devices
for two main reasons. Firstly, diffusion models are typically
large, often reaching gigabyte scale, with substantial memory
requirements. Even with 8-bit quantization, the memory
demands are heavy for mobile devices. Secondly, diffusion
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models function autoregressively by performing image de-
noising over multiple iterations, culminating in an escalated
computational burden on mobile devices.

In this paper, we explore the potential for employing more
aggressive approximation computation methods to further
reduce inference overhead on mobile devices. Specifically, we
intend to utilize the lookup table [11] to supplant the linear
operations in diffusion models, such as convolution that
can be converted to matrix multiplication (MM). Lookup
table utilizes precomputed values stored in a table to
quickly approximate results. A typical implementation of
lookup table is based on product quantization (PQ) [12],
[13], involving partitioning a high-dimensional vector into
lower-dimensional subvectors, which are then independently
encoded by discrete values called centroids. In PQ-based
lookup table, the input is divided into multiple subvectors,
whereupon each subvector is encoded through centroids. The
products of centroids and weights could be precomputed
and stored in a table. During inference, approximated results
are retrieved without explicit computations, significantly
accelerating inference and reducing memory footprints by
adjusting lookup configurations, i.e., the number of centroids
K and their lengths V .

We pinpoint a unique opportunity to apply lookup to
diffusion models. Specifically, during the diffusion models
inference, certain level of Gaussian noise is incorporated into
the image at each denoising step [1] to ensure the diversity
of the generated images. Intrinsically, diffusion models are
tolerant to input noise under certain levels. We evaluated
this tolerance in §2.

However, applying lookup tables to reduce on-device dif-
fusion model inference overhead faces two major challenges.
The first challenge is how to obtain the tables efficiently.
According to our preliminaries (§2), directly applying lookup
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tables with uniform lookup configuration, i.e., subvector
length V and centroid number K, introduces unacceptable
errors. While using a finer-grained lookup table can lead
to higher accuracy, it compromises acceleration. Efficiently
obtaining lookup tables encompasses two issues: (1) Different
granularities of configuration impact the accuracy of the
lookup table and the gains in acceleration, and uniform
lookup configurations misalign with varying informational
content and volume across input features, and may have
a dependency on others, such as RoI in an image [14].
Therefore, a finer-grained configuration is needed to trade
accuracy and inference effenciency. Searching for optimal
configurations exponentially increases the search space. (2)
Learning objectives between centroid optimization misalign
model training goals; the former typically optimizes the
Euclid distance between inputs and centroids through clus-
tering, while the latter optimizes the loss between model
outputs and ground truth, which impacts table accuracy.
While researchers proposed to reduce errors through end-to-
end model training [13], it is impractical for diffusion models,
requiring tens of thousands of GPU hours.

The second challenge is efficiently managing lookup
table optimized inference on mobile devices, including
two issues: (1) Table lookup introduces additional memory
access, necessitating the full utilization of mobile hardware
capacity to achieve efficient inference. (2) The system should
meet diverse user demands for varying inference speeds
while balancing generation quality. Specifically, better images
should be generated when given a latency budget threshold.
Latency budget refers to a specified time within which

the model should generate an image or complete a single
iteration of inference, such as 100ms/iteration or 1s/image,
which is specified by the user.

Our design. We propose LUT-Diff, the first algorithm-
system co-design that efficiently deploys diffusion models on
mobile devices through lookup tables. LUT-Diff can quickly
generate multiple lookup table candidates for each model
layer, each lookup table candidate corresponds to varying
performance. During the inference phase, LUT-Diff selects
the optimal model inference strategy based on a given latency
budget, choosing the appropriate lookup table. LUT-Diff
leverages both the CPU and GPU on mobile devices for
parallel model execution to fully utilize hardware capabilities,
to accelerate on-device diffusion model inference. Specifically,
LUT-Diff involves two techniques:

Efficient lookup table learning consists of two compo-
nents: (1) Layerwise lookup configuration searching. To obtain
finer-grained configurations and reduce the exponentially
huge search space, we employ a layerwise lookup configu-
ration search method to search the lookup configuration for
each layer progressively. Our heuristic is that V and K should
not be uniform to align with feature information, particularly
that V should align with dependencies among features, hence
we start with searching for V. During the search, we use
the Fisher Information Matrix (FIM) to assess the quality
of centroids, which better reflects the relationship between
changes in a layer and the model output [15]. LUT-Diff
progressively replaces the very beginning feature columns
of input with centroids and selects the optimal V until all
input columns are replaced. After determining V, LUT-Diff
selects the same K for centroids with the same length and

estimates all possibilities and corresponding FIM errors.
Finally, LUT-Diff generates a set of lookup configuration
candidates for each layer with different qualities. (2) Weighted
centroid learning. To address the mismatch between the learn-
ing objectives of existing centroid clustering methods and
model training optimization, LUT-Diff involves a weighted
centroid learning method. This approach transforms the data
space and learns the centroids in the output space, thereby
reducing errors. To further reduce the memory footprint,
LUT-Diff uses lower precision representation to encode the
centroids due to the limited centroids number.

Adaptive parallel inference engine also includes two
aspects: (1) parallel inference execution engine. To facilitate
efficient on-device lookup table-based inference, LUT-Diff
involves a parallel inference execution engine through CPU-
GPU co-scheduling. For table lookup, we designed a grouped
lookup strategy, grouping data according to the parallelism
of hardware SIMD instructions [16]. Grouped lookup ensures
that values within a group can be processed within a single
instruction cycle. After the grouped lookup is finished,
LUT-Diff merges the results of all groups. Grouped lookup
and result merge are implemented through “shuffle” and
“bitwise select” hardware instructions, respectively. To fully
utilize hardware capacity, LUT-Diff partition the data
according to the latency on CPU and GPU to accelerate the
inference. The partition strategy is determined by minimizing
the latency differences between the two types of hardware.
The execution of different data partitions is independent,
without introducing intra-operation synchronization over-
head. (2) Adaptive inference strategy selection. Given a latency
budget, LUT-Diff selects the optimal model-level inference
strategy to achieve efficient on-device inference, i.e., choosing
the lookup configuration for each layer to generate better
images while meeting the target latency budget requirement.
To address this, we first modeled the inference acceleration
brought by the lookup table based on the profiled system
performance. Then, we modeled the inference strategy
search problem as a knapsack problem and used a dynamic
programming approach to select the optimal model-level
inference strategy under the given latency budget.

Implementation and evaluation. LUT-Diff is imple-
mented based on the official latent diffusion codebase [17].
We deployed the models on 4 phones using the mobile-
dedicated framework MNN [18]. We conducted extensive
experiments on four models and compared LUT-Diff
with different baselines, verifying the quality of generated
images and the inference performance. The experiments
show that images generated by LUT-Diff are comparable
to the original model, with an average 4.85e−3 MSE for
an image, and an average 0.48 FID increase compared
with the original model. At the same time, LUT-Diff has
higher inference efficiency, achieving up to 9.1× inference
acceleration compared to the baseline method. LUT-Diff
can achieve more than 4× acceleration for all models and
devices, where 4× acceleration is the upper bound of int8
quantization. LUT-Diff can achieve up to 80.2% inference
memory footprint saving. In addition, LUT-Diff has higher
learning efficiency, improving by at least 3281× compared
to the baseline method, because of LUT-Diff’s efficient
learning design.

Contributions of this paper are summarized as follows:
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Fig. 1: Params. and FLOPs percentage of CelebA model.

• We introduce LUT-Diff, the first framework designed for
efficient inference of diffusion models on mobile devices,
aimed at reducing overhead on mobile devices.

• LUT-Diff employs a co-design approach of algorithm
and system integration. Specifically, LUT-Diff is the first
to apply training-free lookup table learning, enabling
efficient centroid learning and lookup configuration search.
LUT-Diff integrates the first lookup table-based parallel
inference engine, fully utilizing mobile hardware capacity
to support efficient and adaptive diffusion model inference.

• We have implemented LUT-Diff and validated it on
4 commodity devices. Experiments demonstrate that
LUT-Diff can generate comparable images and signifi-
cantly reduce inference costs with minimal error trade-offs.

2 BACKGROUND AND PRELIMINARIES

2.1 Diffusion Model

The diffusion models have been emerging for image genera-
tion1. The inference process of diffusion models involves
autoregressively denoising a noisy image over multiple
iterations, to refine the image towards a high-quality output.
The diffusion models often involve U-Net [19] to estimate
the noise in the input image and apply a sampling scheduler,
like DDPM [1], to eliminate the noise, iteratively. However,
diffusion models are notably large in terms of parameters [2].
Their autoregressive nature and the numerous FLOPs during
their inference make them computation-intensive. Moreover,
substantial memory is required for inference, which may be
challenging for mobile devices with limited capacity. These
traits highlight the need for efficient inference optimization
in diffusion models on mobile devices [20], [21].

We conduct a breakdown analysis of the parameters and
FLOPs percentage of CelebA-HQ [2], [22] model. The model
size is 2303MB. The results are shown in Figure 1. We find
that the linear operations, i.e., convolution and MM, account
for most parameters and FLOPs. Such a result motivates us to
optimize the performance of these operations in the diffusion
model. Moreover, the default DDPM requires 1000 iterations
for generation, and even optimized schedulers need tens of
iterations to complete [23], making the overhead of diffusion
model inference on mobile devices substantial.

1. Many other diffusion models focus on other tasks, like audio
synthesis. In this paper, we focus on image generation models.
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Fig. 2: Lookup table-based model inference.
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Fig. 3: Generated Images of the original Celeba-HQ model,
lookup table-based with K=256 and V=1, and vanilla lookup
table-based.

2.2 Lookup Table in Model Inference
In model inference, lookup tables are commonly imple-
mented via PQ to approximate MM. PQ is a data com-
pression method that divides data into smaller, manageable
subvectors and quantizes each independently using centroids
of the same dimension. Figure 2 illustrates the inference
process using lookup tables in a linearly stacked model. The
model inference is completed by matching the input with
centroids (❶) and indexing the precomputed results (❷). In
a PQ-based lookup table, an input matrix with dimensions
N ×D is divided into multiple subvectors each of length V ,
with each group of subvectors having dimensions N × V .
Each group of subvectors is then approximated and encoded
using individual K centroids. The results of centroids and
corresponding weight are precomputed. Therefore, for the en-
coded input matrix, the precomputed results can be directly
used, replacing extensive computational MM operations with
table lookups. The centroids are commonly obtained through
clustering algorithms, such as KMeams.

2.3 Challenges and Opportunities
Challenges. We conduct a preliminary experiment on the
diffusion model to explore the effectiveness of the vanilla
lookup table [11], [24] and the generated images are shown in
Figure 3. We use the model trained on the CelebA-HQ dataset
and apply the lookup table on all MMs and convolutions,
which is converted to MM through im2col. We use the same
hyperparameters as previous work, i.e., K = 16, and input is
split into 64 subvectors. We find that the vanilla lookup table
introduces non-trivial error and influences the generated
image negatively. This is because the vanilla lookup table
overlooks the correlations between data and the amount
of information on each feature. Furthermore, the learning
objectives for centroids in the lookup table differ from the
optimization goals of model training, where the former
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Fig. 4: Diffusion model is tolerant to noise. We add “X%”
noise (X% · N (0,1)) to weight (“W”) and activation (“A”).
N (0,1) denotes standard Gaussian noise.

optimizes the error between inputs and centroids in the
input space, while the latter focuses on minimizing the error
between model outputs and the ground truth in the output
space, thereby introducing discrepancies. We also found
that lookup tables with V=1 and K=256 (equivalent to int8
quantization) can generate high-quality images. Based on
these results analysis, we conclude that the learning process
of lookup tables should be optimized, considering more
granular lookup configurations and accurate tables, to trade
accuracy and acceleration.

Opportunities. Diffusion models are performed by elimi-
nating noise in images. During denoising, the model adds
random noise to each generated image for diversity [1]
at each timestamp. This makes diffusion models naturally
tolerant to noise in input. We show the changes in the image
after adding a certain amount of random noise to each model
layer in Figure 4. We find that the diffusion model is more
tolerant to input noise than weight noise. When we added
1% and 5% noise to each activation, the model could still
generate reasonably good images, and the model only failed
when the noise level reached 10%. However, when we added
5% noise to the weights, the model could no longer generate
recognizable images. These results indicate that a certain
level of noise can be tolerated, providing an opportunity
to apply lookup tables in diffusion models for inference
optimization.

3 LUT-DIFF OVERVIEW

LUT-Diff aims to utilize lookup table to optimize the
diffusion model inference on the mobile device. Specifically,
given a latency threshold, LUT-Diff can automatically
select the optimal inference strategy on a certain device.
As illustrated in Figure 5, LUT-Diff consists of 2 stages, i.e.,
offline stage for efficient lookup table learning and online
stage for adaptive inference execution.

Offline stage. In this stage, LUT-Diff learns the cen-
troids for each layer and searches for the strategies needed
for the online stage. Specifically, LUT-Diff includes the
following steps. (1) First, LUT-Diff gets the layers where
the lookup table can be applied through a “model pro-
filer”. (2) Then, LUT-Diff initialize the centroids through
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& Table
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Fig. 5: LUT-Diff Architecture

weighted centroid learning (§4.1) on a small dataset. Although
the dataset size is much smaller than the whole training
dataset, it is enough for clustering. (3) After centroids are
initialized, LUT-Diff applies layerwise lookup configuration
searching (§4.2). Our insight is that it is necessary to use more
granular lookup configurations, i.e. K and V, according to
our preliminaries in §2. Therefore, even for the same layer,
the choice of K and V is not fixed. LUT-Diff searches for
lookup configurations for each layer of the model. After
completing the search for the lookup configuration, each
obtained configuration corresponds to a different error, a set
of centroids, and a lookup table.

Online stage. There are two key techniques in this
stage. (1) To support efficient lookup table-based on-device
diffusion model inference, LUT-Diff includes a parallel
inference execution engine (§5.1) that can quickly perform
table lookup operations to complete the model inference.
Specifically, when the inference strategy is specified given
a latency threshold, LUT-Diff loads the learned centroids
and completes the inference. During the inference process,
LUT-Diff uses both CPU and GPU to perform inference
in parallel to achieve inference acceleration by utilizing
advanced shuffle and bitwise select SIMD instructions. (2)
LUT-Diff includes an adaptive inference strategy selection
(§5.2) to determine the optimal inference strategy under a
given latency budget. LUT-Diff first models the inference
latency based on lookup tables, constructing the acceleration
benefits brought by different configurations’ corresponding
lookup tables. Then, LUT-Diff selects a configuration and
its corresponding lookup table for each layer to ensure
the best model-level performance. Similar to the offline
stage, we use FIM to evaluate the model-level quality.
LUT-Diff models the aforementioned selection problem as a
knapsack problem and solves it using dynamic programming
to minimize FIM error while meeting the latency budget
threshold.

4 OFFLINE LOOKUP TABLE LEARNING

In this section, we provide a detailed explanation of the
offline stage of LUT-Diff about how it learns the lookup
table. This stage primarily involves two techniques: Weighted
Centroid Learning (§4.1) and Layerwise Lookup Configuration
Searching (§4.2).

4.1 Weighted Centroid Learning
Existing methods for learning centroids mainly include two
categories. The first is unsupervised learning, primarily repre-
sented by the KMeans method, which determines the Euclid
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distance between the input and centroids using Euclidean
distance or cosine similarity and clusters the centroids
iteratively. This method is computation-efficient, as it only
requires input data to obtain the centroids. However, this
method introduces non-trivial error because its optimization
goal is different from the model’s, ultimately affecting the
model’s performance. To address this issue, researchers have
proposed supervised centroid learning [13], which integrates
clustering into end-to-end model training to reduce error.
However, this requires backward propagation through the
entire model, which is computationally inefficient. On the
other hand, the end-to-end training overhead of the diffusion
model is not affordable, which requires tens of thousands of
GPU hours.

To address these problems, we propose a weighted
centroid learning method to mitigate the large errors in-
herent in existing unsupervised methods and to avoid the
inefficiencies of supervised methods. This method remains
unsupervised but incorporates weights into the learning
process. The key advantage of using a weighted approach is
that it aligns the objectives of unsupervised learning more
closely with the goals of model optimization by adjusting
the importance assigned to different features based on their
impact on the output. For instance, in MM, vectors that may
be distant in input space could converge in output space
after transformation, and vice versa. By applying weights
to these vectors based on their transformational impact, the
learning of centroids can more accurately represent their
effect on the final output. Additionally, the weighted method
enables efficient centroid learning, eliminating the extensive
end-to-end training overhead traditionally required.

argmin
{ci}Ki=1

k∑
i=1

∑
x∈Si

∥x⊗W − ci ⊗W∥2 (1)

As formalized in Formula 1 (⊗ denotes MM; ci is the
centroid of cluster Si), we add the weight matrix W to the
original method and use the distance between vectors in
the output space to learn the centroids, reducing the error
between outputs. Similar to the classic KMeans method, the
goal of Formula 1 is to learn centroids C = {ci}Ki=1 such
that the distance between the input and centroids in the
output space is minimized. The rest of the learning process
is consistent with the KMeans algorithm.

During the learning process, we used a uniform sampled
small dataset, significantly smaller than the original training
set. This dataset can be generated in either of the following
ways: by sampling from the complete training set, then
processing as per the training procedure—adding random
noise to the images and using a diffusion model to predict the
noise while preserving the activations; or by randomly gen-
erating images and saving the activations produced during
the inference. Since weighted centroid learning focuses on
the distance relationships in the output space among vectors
through clustering, a small dataset is sufficient to meet the
algorithm’s requirements. As for the text-conditional model
and dataset, we learn the centroids for each class separately,
where the class of the image refers to the subject of the
image. This is because there are heterogeneous classes in the
dataset and different content contains different subjects and
features. In the learning process, the learning of each layer

is independent. After obtaining the input x for each layer,
we use the pre-trained weights W of the model to perform
weighted learning of the centroids.

Finally, for each subvector set, we learn K centroids.
Therefore, for all the centroids of a subvector set, there
are at most K values in a column, indicating that the
centroids can be quantized. Specifically, we apply asymmetric
quantization [25], [26] to encode the centroids with log2K
bit integer, to further reduce the memory footprint of the
centroids.

4.2 Layerwise Lookup Configuration Searching

4.2.1 Heuristic
Based on the preliminaries in §2, our heuristic is that by
using the appropriate lookup configuration, i.e., the centroid
number K and the subvector length V, the lookup table
can achieve good inference results. The question then is
how to determine V and K. Because there are RoIs in the
activations, our insight is that the configuration should
align with them to be more accurate. The convolution
operation can be transformed to MM through the im2col
operation, which unfolds the input of the convolution into
a matrix, where each region of the input is unfolded to a
row vector. Therefore, the subvector should align with it and
we search the subvector length first. Assuming the shape
of the convolution input image is [B,Cin, Hin,Win]

2, where
B represents the batch, Cin represents the input channel,
Hin and Win represent the width and height of the input
image, respectively. After applying im2col, the input image
is transformed into a matrix of shape [B,Hout ∗ Wout, L],
where Hout ∗ Wout is the number of pixels in the output
image, and L is the input feature dimension, related to the
size of the convolution kernel, i.e., the region size. Specifically,
L = Cin ∗Khin ∗Kwin, where Khin and Kwin is the size of
the convolution kernel [27]. We utilize the shape information
of the current layer’s input and output during the search for
V . Specifically, we divide adjacent areas of the image into
the same subvector as much as possible to fully utilize the
information of image locality. For example, for a common
3x3 2-D convolution kernel, choosing V=3 is more conducive
to the utilization of locality than V=4, because V=3 aligns
with one row of the convolution kernel in a channel; and V=9
is consistent with the size of a convolution kernel channel.

To implement adaptive inference, we need to obtain
multiple configurations for each layer. Since subvector length
V should correspond with the RoI, and in weighted centroids
learning, more centroids will not lead to worse results, we
will determine an optimal set of V for each layer and then
explore multiple sets of K as configuration candidates.

4.2.2 Searching for V
The first question is how to determine the subvector length
V for the current layer. There are two challenges here. First,
the error of a certain layer of the model does not reflect the
overall error of the model, so how determining the impact of
the current V on the whole model is a challenge. Second, since
the amount of information contained in different regions in

2. We focus on the Conv2D operation, which is commonly used in
diffusion models for image generation.
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Algorithm 1: V Configuration search
Input: layer, Vcandidates, data, K
Output: VConfiguration

1 Initialize centroids Cinit with each vi and K;
2 Convert block to MatMul; // Convert Conv via

im2col
3 VConfiguration← Dict();
4 Function infer(vconfigtmp):
5 L← sum(vconfigtmp);
6 Infer first L columns through table lookup;
7 Infer remaining columns with original computation;
8 Vconfig← [];
9 while sum(Vconfig) ¡ layer.input.Nin do

10 foreach vi in Vcandidates do
11 V configtmp ← Vconfig + [vi];
12 Infer(V configtmp);
13 fimvi ← FIM(vi); // calculate FIM for vi
14 end foreach
15 Vconfig.append(argminvi

fim);
16 end while
17 VConfiguration[layer]← Vconfig;

Algorithm 2: K Configuration search
Input: layer, Kcandidates, data, VConfiguration
Output: KConfiguration

1 Initialize centroids Cinit with VConfiguration each ki;
2 Convert block to MatMul; // Convert Conv via

im2col
3 KConfiguration← Dict(default=Dict());
4 Function permute():
5 seq← [];
6 foreach vi in layer do
7 seq.append(layer.vi);
8 end foreach
9 permuted kconfig← permute each kp to each item in

seq;
10 return permuted kconfig
11 foreach kconfig in permute() do
12 infer layer with kconfig and VConfiguration;
13 KConfiguration[kconfig]← FIM(kconfig);

// calculate FIM error of kconfig
14 end foreach

the image is different, V should be non-uniform to maximize
the optimization brought by the lookup table. Because a
smaller V means finer granularity of centroids, but at the
same time, the corresponding acceleration will also be lower;
vice versa [28]. The non-uniform V means a huge search
space, and how to search for the appropriate V configuration
in this huge space is a challenge.

For the first challenge, we used the second-order error
FIM [15]. Compared to absolute errors like MSE, the second-
order error FIM can better reflect the relationship between
the changes in a model layer and the global changes in
the model because the FIM quantifies how sensitive the
model’s predictions are to changes in each parameter [29],
[30], meaning that this metric can estimate the impact
of a parameter on the model’s output, indicating which
parameters are most critical for the network’s performance.
In lookup table-based model inference, the centroids can be
treated as parameters. Therefore, we use FIM to address the
first challenge.

For the second challenge, we perform a progressive

search. Due to the model containing numerous layers,
searching for subvector lengths for the entire model would
result in an extremely large search space. Even for individual
layers, if an exhaustive search method is used, the cost
remains exponential. Therefore, we adopted a progressive
replacement strategy, as detailed in the Algorithm 1. In the
search process, we first initialize centroids according to §4.1
based on the candidate set of V . In the initialization process,
we chose a sufficiently large K for initialization to avoid the
impact of a smaller centroid number (we used 4096 in the
experiment). For each candidate V = vi, we start from the
first column of the input matrix, divide the first vi columns
into a subvector, perform inference of this part through a
table lookup, and keep the rest unchanged (Line 10-12). After
calculating the FIM of all candidate V = vi (Line 13), we
can obtain the optimal length of the subvector at the current
position (Line 15). The second loop starts at the position
where the previous loop ended, continues to complete
the subsequent replacement, and determines the lengths
of the subsequent subvectors. Using such a progressive
replacement method, the search for the V configuration
of a layer can be completed with linear complexity. After
completing the search process, the optimal subvector length
can be obtained.

4.2.3 Searching for K
After completing the search for V , we can obtain a set of
optimal subvector length configurations for the layer. Then,
based on the determined V , we evaluate the impact of
different choices of K on the overall performance of the
layer, as shown in Algorithm 2. The algorithm first initializes
the centroids based on the determined V (VConfiguration)
and the candidate set of K (Kcandidates). For each subvector
with length V = vi, we permute K = kp from the candidate
values and calculate the FIM error (Lines 11-13). It is
important to note that when choosing K , we select the same
K for subvectors of the same length in each layer to ensure
parallelism in subsequent inference (Lines 6-9). Ultimately,
Algorithm 2 will produce a set of configurations that includes
the different choices of K for the layer and the corresponding
FIM errors.

However, during the search process, we found that there
are always some subvectors whose FIM only decreases when
K is sufficiently large. These subvectors account for about
2% out of the total. When selecting K the same as other sub-
vectors with the same length, their FIM error is significantly
higher than that of other subvectors. Figure 6 shows the CDF
of FIM errors in different layers of the model trained on
the CelebA-HQ dataset. These subvectors have a significant
impact on the final model’s performance. Therefore, for these
subvectors, we choose not to replace them with lookup tables,
but to retain the original computation.

For text-conditional models, we search the K and V for
each class. Ultimately, Algorithm 1 and Algorithm 2 will
generate a series of lookup configurations, as well as the
corresponding centroids, where V is fixed but K varies.
Different configurations correspond to different errors. The
lookup tables are also computed during the search process
based on the centroids and the model weights.

5 ONLINE INFERENCE
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Fig. 6: Error CDF of 3 layers of CelebA-HQ model.

In this section, we detail the online stage of LUT-Diff,
explaining how it achieves efficient inference under varying
latency budget constraints. There are two major techniques:
the Parallel Inference Execution Engine (§5.1) and Adaptive
Inference Strategy Selection (§5.2).

5.1 Parallel Inference Execution Engine

We design an efficient inference engine that can efficiently im-
plement parallel inference through CPU-GPU co-scheduling,
to achieve optimal inference performance. Because utiliz-
ing both types of hardware can definitely achieve higher
inference performance. Overall, we split the data between
CPU and GPU, and the data partitioning in LUT-Diff is
based on hardware capabilities, specifically the processing
speeds of the CPU and GPU. Our goal is to balance the
workload between the two hardware components as evenly
as possible for the same operation. Since there are no
dependencies or conflicts between the different features
of the input data for the above three operations, they can
be fully parallelized. Balancing the workload between the
two hardware components minimizes the waiting overhead
between hardware.

For a table lookup operation, we split it into CPU and
GPU to fully utilize the device capacity. Specifically, the
computation of subvectors with exceptionally large FIM
errors (described in §4.2), the distance computation, and the
remaining lookup, are split into CPU and GPU. These three
operations are finished in sequence. To utilize both CPU
and GPU simultaneously for executing an operator, we split
the input data between the two hardware units. Since the
different features in either operation are computationally
independent, parallel execution on both types of hardware is
feasible without the need to consider intra-operation synchro-
nization issues during computation. We partition the input
data to ensure the lowest inference latency for the current
layer according to Formula 2, where TCPU :OP /TGPU :OP

denotes the latency of the certain operation on the certain
hardware, such as MM and table lookup. The optimization
goal is to minimize the latency gap between CPU and
GPU. This is because of the varying lookup configurations
across layers, making it challenging to identify an optimal
model-level split strategy that minimizes end-to-end latency.
Nevertheless, our optimization objective ensures that there
is seamless synchronization between the CPU and GPU,
thereby also reducing the overall latency to the greatest
extent possible. The latency of each operation can be obtained
according to our modeling method detailed in §5.2. Finally,

the optimal partition DCPU/DGPU indicates that in the ma-
trix with input feature length D, subvectors with total length
DXPU are inferred on the corresponding hardware.

∑nbad

i vi
denotes all sub-vectors whose FIM is extremely larger than
others (Figure 6). During the selection of subvectors, we
prefer to place subvectors of the same length on the same
hardware to maximize the parallelism. Specifically, we start
from the initial features of the data and prioritize selecting
the shortest subvectors, assigning them to the CPU. If the
CPU’s data allocation requirement DCPU is not met at this
point, we proceed to select the next shortest subvectors from
the beginning of the features until DCPU is satisfied. The
remaining data is then allocated to the GPU.

DCPU , DGPU = argmin
DCPU ,DGPU

||TCPU :OP − TGPU :OP )|| (2)

D = DCPU +DGPU +

nbad∑
i

vi

We implement efficient parallel table lookup operations
on both ARM CPU and GPU through “shuffle”. Specifically,
on ARM CPUs, we use the TBL instruction; on mobile GPUs,
we use the shuffle function in OpenCL. The shuffle operation
can take two fixed-length vectors as input (determined by the
SIMD instruction length), representing the source data and
indices, and can quickly swap multiple data points within
the time of a single instruction. Since the number of lookups
per instruction is limited, we design a grouped table lookup
operation, as illustrated in Figure 7. For example, if each
table lookup operation can only look up Q numbers, the K
centroids need to be grouped every Q centroids, and each
group is looked up separately to form the result. After lookup
operations, the results are merged through the “bitwise select”
operation, which is implemented by leveraging the select
function in OpenCL, and the BSL instruction on ARM CPU.
This instruction/function can accept two fixed-length vectors
as parameters: the source data and a mask. It then selects bits
from the source data based on whether each bit in the mask is
set to 1. As illustrated in the figure, during the bitwise select
operation, since each index selects only one target data, each
final result value definitely and exclusively comes from the
output corresponding to a specific group. After the lookup
groups are defined, the mask can be calculated, which is
then used in the bitwise select operation. Additionally, when
implementing lookup operations on each hardware, we fully
considered data access locality, including placing the index
of shuffle operation in the inner loop to avoid redundant
data loads and pre-transposing data to store it by grouped
dimensions first, ensuring that the accessed data during
loading is contiguous.

For other operations, we also split them into CPU and
GPU according to the hardware capacity, and the goal is
also to minimize the computation latency gap between
the two types of hardware. Since other operations, such
as distance computation through MM, do not have de-
pendencies between different features during computation,
it is also feasible to divide these operations between the
CPU and GPU without the need to consider the effects of
intra-operation synchronization. For these input data, we
prioritize allocating the first DCPU features to the CPU and
then assign the remaining features to the GPU. Ultimately,
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Fig. 7: Table lookup in the inference engine.

the system can achieve efficient diffusion model inference
through the parallel inference execution engine.

5.2 Adaptive Inference Strategy Selection

During the model inference in the online stage, different
configurations correspond to different FIM errors and also
different latency budgets. Since the model contains many
layers, each with many different configurations, choosing the
configurations is challenging.∑

N · vi · ki +
N

Q
·
∑

ki
Q
·M · E ≪ N ·D ·M (3)

FIM i
LATj

= {FIM i−1
LATj−lati

+ fimi|1 ≤ i ≤ n}min (4)

We first modeled the latency of the system under different
lookup configurations. Since the model is inferred layer by
layer, it is only necessary to analyze the latency of one layer
and then extrapolate to the latency of the entire model. We
assume that the input with feature-length D is divided into
n subvectors, with lengths {v1, v2, . . . , vn}, and the number
of centroids for each sub-sector is {k1, k2, . . . , kn}. If the
original model’s input dimension is N ∗D and the weight
dimension is D∗M , to ensure that the lookup table technique
can bring acceleration, Formula 3 needs to be satisfied,
where E denotes the normalized efficiency of lookup of
a single value, and Q denotes the data length of SIMD
instructions. For example, for 128-bit Neon instructions, if
the data type operated on is int8, then Q = 16 (128/8=16).
Lookup efficiency E can be profiled in §5.1. In the formula,
the first term on the left side represents the complexity of
calculating the distance between the input data and the
centroids; the second term represents the complexity of table
lookup, and the right side represents the complexity of the
original MM. Specifically, N

Q indicates that we need to group
the indices into N

Q groups and perform the table lookup
operation for each group;

∑
ki

Q indicates that for the i-th
subvector set, we need to perform the lookup instruction
for ki

Q times. Constrained by Formula 3, we can obtain the
latency corresponding to each configuration on the target
device.

Given the latency budget, the strategy selection is mod-
eled as the problem of choosing the best combination of
lookup configurations under the given budget. We model this
problem as a knapsack problem, i.e., choosing a configuration
for each layer so that the final FIM error is minimized and the
latency requirement is satisfied. Since the number of layers in
the diffusion model is constant, we use the classical dynamic
programming algorithm, as formulated in Formula 4. In

the formula, we calculate the minimal FIM error FIM i
LATj

of computing i layers under latency LATj . lati and fimi

denote the latency and the FIM error of the i − th layer,
respectively. Because the FIM error can reflect the changes in
the whole model, we used the added FIM error of each layer
as the final error. After traversing all feasible combinations
of configurations, we select a set of optimal configurations
for the target latency budget with minimal FIM error as the
inference strategy.

During the inference process, LUT-Diff selects the
optimal inference strategy according to the given latency
budget, loads the corresponding centroids and lookup tables,
and performs inference. For the text-conditional models, the
selection and loading are performed after the text prompt is
processed by the text encoder. Specifically, LUT-Diff uses
the text encoder as a “router”. After the prompt is processed
by the encoder, the subject of the image can be obtained
according to the output. We select the optimal inference
strategies of the corresponding subject. Then, LUT-Diff
loads the required tables for inference. This is because of
the heterogenous classes, requiring an “on-the-fly” loading
manner. In case the class does not have learned tables,
LUT-Diff just uses naive int8 quantization for inference
and learns the needed table, and then the lookup table can
be used in the subsequent image generation.

6 IMPLEMENTATION

We implemented K-V configuration search, centroid learning,
and inference strategy search based on the latent diffusion
repository [2], [17] and PyTorch 2.0.1. We uses MNN [18]
for deployment. We chose these because latent diffusion is
the official code for diffusion models, and MNN provides a
convenient solution for deploying models across different
platforms, supporting direct conversion and deployment of
PyTorch models. Our implementation includes 8.3k lines of
Python/C++/OpenCL code, including offline phase configu-
ration and strategy search, as well as the weighted centroid
learning algorithm, and operator implementation on various
hardware for online inference.
Hyper-parameters. When searching for strategies, we ex-
clude the first input layer and the last output layer because
they are much more sensitive to the errors introduced by
table lookup than other layers. We replace the remaining
linear layers, including the MM in the transformer layer and
the Conv2d operation, which is converted to MM through
im2col. We set the candidate set for K as {8, 16, 32, 64, 96,
128}. This is due to the consideration of alignment with
SIMD instructions, as well as the size of the input image for
the model layer (ranging from 2x2 to 64x64). Moreover, it is
necessary to ensure that the efficiency of using SIMD is faster
than lookup values one by one, i.e., N

Q · KQ < N , which means
that for the N input values, the number of table lookup
operations should not be more than that of computation. The
candidate set for V is set as {3, 6, 9} because 3x3 convolutions
account for the largest proportion, and it is necessary to
consider the locality of image regions so that the divided
subvectors align the convolution kernels. For other linear
operations, the correlation between different features of the
input is relatively small, so we use the same V candidate set.
After completing the layerwise lookup configuration search,
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we profile the inference engine based on the searched lookup
configuration to obtain the lookup efficiency parameter E.
During lookup table learning, we learn the centroids for one
epoch and the batch size is 20. We use random seed 0 for
image generation.
Baseline: We compare LUT-Diff with 4 baseline methods.
To evaluate the quality of images generated by LUT-Diff,
we compared LUT-Diff with int8 and original model;
to evaluate the inference performance of LUT-Diff, we
compared LUT-Diff with MNN [18]; to evaluate the memory
saving achieved by LUT-Diff, we compared LUT-Diff
with MNN, and broke down the memory saving into pa-
rameter and activation memory saving; to evaluate the
efficiency of LUT-Diff in generating configurations and
learning centroids, we compared LUT-Diff with LUT-NN.
Each baseline method is described as follows:
• original: the original diffusion model trained on the each
dataset. We use the officially released model checkpoint [17].
• int8: We use q-diffusion [7] as the int8 quantization
methods for comparison, a state-of-the-art quantization
method that divides the model according to time steps and
quantizes the model to int8 within each time step range
separately.
• MNN: Deployment of the original full precision models on
different devices based on the MNN [18] framework.
• LUT-NN: LUT-NN proposes a learnable lookup table tech-
nique, optimizing the learning of centroids through the end-
to-end model and centroids training.

7 EVALUATION

7.1 Experiment Setting

Model and Dataset. We tested on 5 diffusion models.
Four unconditional models were trained on the CelebA-
HQ (CelebA) [22], LSUN-Churches256 (Church) [31], LSUN-
Bedrooms256 (Bedroom) [31], and FFHQ256 (FFHQ) [32]
datasets, respectively. One text-conditional model was
trained on the Conceptual Captions (txt2img) [33] dataset.
We use the official model checkpoints [17] for experiments.
During lookup table learning, we use a subset with 1000
images uniformly sampled from the original training dataset
for the unconditional models. For the text-conditional model,
we categorized the dataset based on the main subject of
the images and sampled 50 images per class. This is to
reduce the learning overhead because of the heterogeneous
classes contained in the T2I dataset. We use the original
text encoder model contained in the diffusion model as the
text classifier to split the dataset according to the image
class. Initially, we learned tables for 50 classes. We obtain the
centroids learning dataset by adding random noise, using the
diffusion model to predict noise, and capturing intermediate
activations through PyTorch hooks. The noise addition and
training hyperparameters are the same as those used in the
original paper [17], [2].
Testing Hardware. We conducted evaluations on 4 phones:
(1) Xiaomi 14, equipped with SnapDragon 8Gen3 SoC,
integrated with Adreno 750 GPU; (2) Redmi K60 Champion
Edition (shorted as Redmi K60), equipped with SnapDragon
8Gen2 SoC, integrated with Adreno 740 GPU; (3) Samsung
S21, equipped with SnapDragon 888, integrated with Adreno

TABLE 1: FID results. Lower is better.

original int8
LUT-Diff

Low Medium High

Church 2.32 2.50 2.68 2.91 2.79
Bedroom 3.57 4.38 4.49 4.74 4.91
CelebA 0.80 0.82 0.88 0.86 0.92
FFHQ 2.29 2.85 2.11 2.07 2.17
txt2img 9.53 10.22 11.04 12.26 13.11

660 GPU; (4) Samsung Note20, equipped with SnapDragon
865, integrated with Adreno 650 GPU.
Evaluation Metrics. We evaluated the efficiency of
LUT-Diff from different aspects, including the quality of
generated images, the acceleration of image generation, the
inference memory footprint, and the efficiency of the training-
free centroids learning. In evaluating image quality, we
compared the MSE between images generated by different
methods and those generated by the original model to com-
pare their similarity. At the same time, we tested the Frechet
Inception Distance (FID) [34], [35] of generated images
compared with the original training dataset. The acceleration
is measured by the normalized inference speedup in one
denoising iteration. The memory footprint is measured by
the normalized memory saving. The efficiency of lookup
table learning is measured in GPU hours. Because of the
significant variations in inference latency across different
models and devices, we use the acceleration ratio as the eval-
uation metric for demonstration in subsequent experiments.
The acceleration ratio refers to the acceleration brought by
LUT-Diff compared with the naive deployment method,
which is equivalent to the latency budget. We chose the
three inference strategies with three different acceleration
ratios. We chose the theoretical upper bound of int8, i.e.,
4× acceleration, as the baseline to ensure that LUT-Diff
consistently outperformed it. The lowest was the one that
is just faster than int8, denoted as “Low”; the highest was
the one achieving the maximum acceleration ratio without
a sharp deterioration in images, denoted as “High”; the
medium was a balance between the lowest and the highest
ratio, denoted as “Medium”. As for the granularity of
different strategies, “Low” corresponds to a finer granularity
with larger K and correspondingly slower inference, while
“High” corresponds to a coarser granularity with smaller K
and correspondingly faster inference, and “Medium” is a
compromise one.

7.2 Quality of Generated Images
We evaluated the quality of generated images by LUT-Diff
and compared them with int8 and original. We exclude
LUT-NN because it requires end-to-end model and centroids
training through backward propagation, which is unafford-
able. We will show these results in §7.5. We used Redmi
K60 in the experiment.

Figure 8 shows the images generated by each method.
We find that LUT-Diff can generate images very similar to
those of the original model. In Figure 8, the MSE produced by
our method is lower than 2.4e−2. In the best case, it reached
1.1e−3 (the first image of the CelebA model). Compared
to the int8 method, the difference in images produced
by our method is also very small. For instance, on the
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Fig. 8: Images generated by baselines and LUT-Diff, under strategies with different acceleration ratios. The value below
each image is the MSE of the generated image compared to the baseline, with the image data normalized to [-1, 1]. For the
text-conditional model, we use the average acceleration ratio.

CelebA model, the MSE of images generated by our method
ranges from a low of 1.1e−3 to a high of 2.4e−3, whereas the
MSE for the int8 method is 8.2e−4. This error is minimal,
making the visual differences in the generated images almost
imperceptible to the naked eye. Additionally, we find that in
some cases, the MSE of our method is even better than that of
int8, such as the first image of the Bedroom model, where
the highest MSE of images generated by our method under
different acceleration ratios is up to 8.3e−3, but the MSE for
the int8 is 2.8e−1. The gap between them reaches 33.7×,

with an absolute error of 0.27. Correspondingly, the images
generated by int8 also show significant visual differences
from the original images. The reason is that the lookup table
is expressive with fine-grained configuration and accurate
centroids. LUT-Diff can capture the internal information of
different feature dimensions and minimize the centroids error
through the proposed lookup table learning approach. As
for the text-conditional model, LUT-Diff can also generate
images similar to baseline methods. We use the prompts
to generate “a virus monster”, “a golden retriever on the
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Fig. 9: Normalized acceleration results. The red dashed line is the upper bound of int8, i.e., 4×.

grass”, “a room with an ocean view”, and “a towering tree
under the sky”. Although there are some scenarios that
exhibit discrepancies compared to the original model, for
instance, when generating virus monster images under a high
acceleration ratio, with the MSE reaching 0.012, LUT-Diff
is still capable of generating high-quality images. This is
primarily because LUT-Diff employs a multi-lookup table
design approach, generating a corresponding lookup table
for each class, thereby improving the model accuracy.

Table 1 lists the FID of images generated by each method.
Taking the “High” strategy as the example, on the Church
model, the FID of our method surpasses int8 by up to 0.29,
on the Bedroom model by 0.53, and on the CelebA model by
up to 0.1. Even compared to original, the increase in FID
caused by our method does not exceed 1.34. Interestingly,
on the FFHQ model, we find that LUT-Diff’s FID is at
least 0.12 lower than that of original, and at least 0.68
lower than that of int8. One reason we analyze is that the
differences between these generated images are small, but the
features of the images generated by LUT-Diff in the high-
dimensional space are closer to the training data. Our method
achieves better results than int8, which also demonstrates
the high accuracy of the lookup tables learned by LUT-Diff.
For text-conditional models, we observed that LUT-Diff

increases more FID compared to the unconditional models.
This is mainly because text-conditional models are more
complex, with more diverse inputs, which increases the
error of lookup table. However, it is also acceptable, as
LUT-Diff is still capable of generating high-quality images,
with only subtle differences in the appearance of the images.
In summary, LUT-Diff’s performance on FID is comparable
with original.

In summary, LUT-Diff has comparable model perfor-
mance with the original model under various acceleration
ratios. Such results are inseparable from a specific component
in the system. Firstly, the offline lookup table learning we
proposed accurately captures the distribution characteris-
tics of different subvectors, trading a minor accuracy loss
for significant savings in latency and memory footprint.
Additionally, the CPU-GPU parallel inference engine we
developed provides systemic support for inference accel-
eration, ensuring efficient inference. We will conduct a
breakdown analysis in §7.6 to demonstrate the impact of
each component.

7.3 Inference Acceleration

We evaluated the acceleration ratio of end-to-end inference of
LUT-Diff under different inference strategies and devices.
We also use 3 strategies and denote them as “Low”, “Medium”

Original parameter

Low parameter

Medium parameter

High parameter

Original activation

Low activation

Medium activation

High activation

Fig. 10: Normalized memory on Redmi K60.

and “High”, respectively, the same as the previous section.
We also exclude LUT-NN in this experiment due to the same
reason. The results are shown in Figure 9.

Our key observation and conclusion are that across all
devices, LUT-Diff consistently and remarkably achieves
a higher acceleration ratio than MNN and outperforms the
theoretical acceleration upper bound of int8. On all devices,
compared with MNN, LUT-Diff brings 4.8-8.7× acceleration
on the Church model, 4.6-8.5× acceleration on the CelebA
model, 4.5-9.1× acceleration on the Bedroom model, 4.6-8.6×
acceleration on the FFHQ model, and 4.1-7.7× accelera-
tion on the txt2img model. We observed that on the text-
conditional model, LUT-Diff does not perform as well in
terms of acceleration ratio compared to other models. This is
mainly because text-conditional models have more complex
input, requiring LUT-Diff to adopt a more fine-grained
lookup configuration with smaller subvector lengths V and
a larger number of centroids K . This results in larger tables,
increasing inference time. However, LUT-Diff is still able to
achieve faster acceleration compared to int8 quantization.
On the four devices, LUT-Diff consistently and remarkably
outperforms the upper bound of the acceleration of int8
w.r.t. all strategies, as shown in the red dashed line in the
figure. Such a promising result comes from the computation
reduction, hardware co-scheduling, and efficiency of lookup
operation than computation. LUT-Diff can achieve up
to a 9.1× acceleration compared to the baseline method
(Bedroom model, Samsung S21), because of LUT-Diff’s
ability to select the optimal inference strategy under a specific
budget, maximizing the benefits of the lookup table while
minimizing errors. On resource-constrained mobile devices,
using lookup tables to reduce computation yields significant
benefits. LUT-Diff’s inference engine fully utilizes the CPU
and GPU for parallel processing without the need for intra-
operation synchronization. On mobile devices, the unified
memory architecture on the chip ensures high data transfer
efficiency, reducing the synchronization overhead after each
operation.
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TABLE 2: FID results without weighted centroids learning or lookup configuration search. Value in the bracket is the FID
increase compared with LUT-Diff in Table 1.

LUT-Diff w/o centroids learning LUT-Diff with fixed V LUT-Diff with fixed K
Low Medium High Low Medium High Low Medium High

Church 3.48 (0.80) 4.10 (1.19) 4.52 (1.73) 10.00 (7.32) 13.33 (10.42) 19.31 (16.52) 30.06 (27.38) 30.06 (27.15) 30.06 (27.27)
Bedroom 7.09 (2.60) 7.63 (2.89) 8.35 (3.44) 16.39 (11.90) 19.81 (15.07) 37.02 (32.11) 42.59 (38.10) 42.59 (37.85) 42.59 (37.68)
CelebA 1.23 (0.35) 1.21 (0.35) 1.40 (0.48) 3.55 (2.67) 5.12 (4.26) 7.28 (6.36) 18.12 (17.24) 18.12 (17.26) 18.12 (17.20)
FFHQ 3.00 (0.89) 3.13 (1.06) 3.45 (1.28) 8.27 (6.16) 10.16 (8.09) 12.48 (10.31) 35.29 (33.18) 35.29 (33.22) 35.29 (33.12)
txt2img 13.92 (2.88) 17.81 (5.55) 21.62 (8.51) 49.91 (38.87) 61.23 (48.97) 81.37 (68.26) 186.03 (174.99) 186.03 (173.77) 186.03 (172.92)
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Fig. 11: Lookup table learning efficiency of LUT-Diff

7.4 Memory Footprint

We evaluated the memory footprint during inference with
LUT-Diff, comparing it with original. We also excluded
LUT-NN in this experiment. We used a batch size of 1, and the
device is Redmi K60. We chose the same strategies with §7.2.
Figure 10 shows the memory footprint of inference using
inference strategies with different theoretical acceleration
ratios. Since int8 brings up to 75% memory saving, we
exclude it in the figure. We find that LUT-Diff can bring
different degrees of memory savings during inference. When
choosing the “High” strategy, LUT-Diff can bring the
maximum memory footprint savings, reaching up to 80.2%
on the Church model. The memory saving is at least 70.9% in
all cases. LUT-Diff can reduce the memory of both model
parameters and activation. Specifically, LUT-Diff reduces
up to 86.2% parameter memory and 50.0% activation memory.
This is because LUT-Diff does not need to store the com-
plete model parameters but instead the centroids and corre-
sponding pre-computed result table. Given a MM with input
size N ∗D and weight size D ∗M , LUT-Diff can reduce the
parameter memory footprint from O(D ∗M) ∗ O(float32)
to at most O(

∑
(ki ∗ vi + ki ∗ M)) ∗ O(log2ki), where ki

and vi is the centroid number and length of each subvec-
tor. We encode the centroids and table non-uniformly to
reduce the memory footprint further so that the memory
overhead for each value becomes O(log2ki), as described
in §4.1. Because ki ≪ D, LUT-Diff can achieve promising
parameter memory saving. Besides, the memory footprint
of the encoded centroid indices during inference is as low
as N ∗ D

V ∗O(log2ki). We found that on the text-conditional
model, LUT-Diff performs less effectively in terms of
memory savings compared to other models. This is primarily
because LUT-Diff requires larger lookup tables to store
information. Nevertheless, the memory-saving performance
of LUT-Diff remains very significant, reaching 70.9%.

7.5 Efficiency of Lookup Table Learning

We evaluated the efficiency of centroid learning and con-
figuration searching, i.e., the offline stage in LUT-Diff.
The baseline we compared with is LUT-NN, which requires
end-to-end training of centroids. Since the cost of training
diffusion models is unaffordable to us, with the default
setting requiring training on the complete dataset for 1000
epochs, we used the same settings as LUT-Diff when
training LUT-NN, i.e., training 1000 images for 1 epoch. We
estimated the training cost of LUT-NN when training the
whole dataset for 1000 epochs by multiplying the cost of one
epoch by 1000. Other hyper-parameters of model training,
such as learning rate, as well as K and V in LUT-NN, were
kept consistent with the original paper. At the same time,
we evaluated the quality of images generated by LUT-Diff
and LUT-NN after learning the same amount of data, i.e.,
1000 images for 1 epoch. We used one P100 GPU in the
experiment.

The results are shown in Figure 11. Figure 11(a) shows
the training time of each method. For all models, LUT-Diff
can complete all centroid learning and strategy searches
within 3.1 hours. In contrast, although LUT-NN outperforms
LUT-Diff in training 1000 images, LUT-NN will be slower
than LUT-Diff if it undergoes training for one epoch on the
complete dataset. If training for 1000 epochs, LUT-NN would
require at least 10173 P100 hours (CelebA model), which is
3281× of LUT-Diff and is unacceptable. We conducted a
breakdown analysis of the learning efficiency of LUT-Diff,
dividing it into the costs of centroid learning and lookup
configuration search. We found that the overhead of centroid
learning averages 25.9%. These results indicate the efficiency
of the proposed centroid learning methods. LUT-Diff can
finish the configuration search within 2.6 hours, indicating
that the layerwise search algorithm can significantly reduce
the search space. For text-conditional models, we observed
that the training time for LUT-Diff significantly increased.
This is mainly because we trained separate lookup tables
for multiple categories. In this experiment, we used a total
of 2500 images, far more than those used for other models.
Moreover, we found that the time for centroid learning hardly
increased. This is because the centroid learning for each layer
is independent and can be performed in parallel. In contrast,
the search configuration requires the involvement of the
entire model, which results in a higher proportion of time
consumption. Due to the larger model size, the training
time for LUT-NN increases significantly. In comparison, our
method is more efficient than LUT-NN. At the same time, we
showcased a comparison of images generated by LUT-Diff
and LUT-NN on the CelebA model, where LUT-NN was
trained for one epoch on 1000 images. The results are
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Fig. 12: Ablation results of the parallel inference engine of LUT-Diff. The device is Redmi K60.

shown in Figure 11(b). We find that after learning the
same amount of data, LUT-NN cannot generate recognizable
images, whereas our method produces images very close
to original. In summary, LUT-Diff can learn centroids
more efficiently than LUT-NN. With the same amount of
training, LUT-Diff generated better images than LUT-NN.
Considering the high training cost of LUT-NN, we do not
consider this baseline in subsequent experiments.

7.6 Ablation Study
We conducted an ablation study to explore the specific bene-
fits each technology provides. Specifically, we examined the
benefits of weighted centroid learning, lookup configuration
searching, and the parallel inference engine. We used Redmi
K60 in this experiment.
Benefit of weighted centroid learning. We explored the
FID of generated images after learning the centroids in the
input space. The results, shown in the first 3 columns of
Table 2, indicate that the FID in the input space is higher
than in the output space. The results reveal that the FID in
the input space under various acceleration ratios increases by
1.42 on average compared with learning in the output space,
and the average FID is 1.51× that of LUT-Diff on average
for unconditional models. Taking the Bedroom model as the
example, the FID increased by up to 3.44. This is primarily
due to the differences between the learning targets in the
input space and the optimization objectives of model training
in the output space. The weighted centroid learning more
closely aligns with the optimization objectives of model
training, as both are completed in the output space. In
contrast, the input space learning disregards the impact of
model weights, thereby affecting the FID results. For the
text-conditional model, we found that learning centroids
in the input space leads to a more significant increase in
FID. For instance, under the “High” inference strategy, the
FID increased by 8.51. This is primarily due to the larger
parameter size and the more complex inputs of the model.
Without processing through the model layers, the input space
contains more diverse features with higher data variance,
making centroid learning in the input space significantly
more challenging.
Benefit of lookup configuration searching. We evaluated
the FID under uniform lookup configurations. Specifically,
after searching for the lookup configurations, we updated the
configurations and fixed either the number of centroids or the
sub-vector length. We used the same values as LUT-NN when
fixing K or V. We used the same searched configurations as
§7.2 for comparison convenience. The results are presented
in the last 6 columns of Table 2.

After we fixed the sub-vector length V, using the Bedroom
model as an example, the FID of the generated images

was significantly higher than that of LUT-Diff across all
configurations. For instance, for the unconditional models, in
the “High” configuration, the model’s FID increased by 32.11,
reaching 37.02, which is 10.37× that of the original model.
Even in the “Low” configuration, the FID reached 16.39,
which is 4.59× that of the original model, an increase of 11.90
compared to the LUT-Diff configuration where both V and
K are searched. Across all models and configurations, the
average FID is 5.26× that of LUT-Diff, with an average
increase of 10.92 compared to LUT-Diff. These results
indicate that fixing the sub-vector length makes the lookup
table less capable of capturing local correlations in the data,
leading to a significant decline in model performance. Thus,
using a fixed V substantially negatively impacts model
performance. For the text-conditional model, we found
that fixing V also leads to an increase in FID, and the
increase is more pronounced compared to the unconditional
models. Specifically, under the “High” inference strategy,
the FID increased by 68.26. This further demonstrates that
fixing V hinders the ability of subvectors to capture the
correlation information between data points, highlighting
the advantages of the LUT-Diff algorithm.

Interestingly, when we fixed the number of centroids
K, we found that the performance across different con-
figurations was identical. Whether the strategy is “Low”,
“medium”, or “High”, the FID of the generated images
was the same. This is primarily due to the way LUT-Diff
searches lookup configurations. LUT-Diff first searches for
V to capture local data correlations and then fixes V while
searching for different K values. Therefore, if a uniform K is
used, the differences among configurations are eliminated,
resulting in the same model performance. We found that
after fixing K, the FID of the generated images increased
by 17.20-38.10, which is 8.67-21.07× that of LUT-Difffor
unconditional models. This is mainly because using a uni-
form number of centroids ignores the diversity characteristic
of different sub-vector distributions. If the distribution is
more dispersed, smaller K can lead to larger errors, affecting
model performance. Therefore, using a uniform number of
centroids not only negatively impacts model performance
but also undermines the adaptiveness of LUT-Diff. As for
text-conditional models, we observed a significant increase in
FID, reaching 186.03, when K was fixed. Upon examining the
generated images, we found that the entities in the images
became barely recognizable. This is primarily because LUT-
NN uses a fixed K of 16, which is far from sufficient to
meet the demands of this model. In contrast, LUT-Diff
effectively reduces lookup errors by dynamically searching
for the optimal K, further demonstrating its efficiency and
adaptability.

These results indicate that both the number of centroids
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TABLE 3: Breakdown of inference strategy (the left 9 columns) and inference latency (the right 3 columns).“Enc.”: encoding
latency; “Comp.”: computing latency for sub-vectors with large error; “LUT”: LUT latency. The device is Redmi K60.

% K=8 K=16 K=32 K=64 K=96 K=128 V=3 V=6 V=9 % Enc. Comp. LUT

Lo
w

Church 10.1 33.3 30.2 17.6 5.2 3.6 61.4 29.7 8.9

Lo
w

Church 57.0 25.7 17.3
Bedroom 11.4 31.5 34.1 15.4 4.1 2.5 60.2 31.9 7.9 Bedroom 55.3 27.7 17.0
CelebA 10.9 30.7 33.5 16.4 5.0 3.5 62.3 29.9 7.8 CelebA 56.2 26.7 17.1
FFHQ 10.8 30.2 32.1 16.8 4.8 5.3 61.9 31.1 7.0 FFHQ 55.1 27.8 17.1
txt2img 8.2 28.2 35.3 16.5 5.1 6.7 66.2 29.9 3.9 txt2img 58.6 28.1 13.3

M
ed

iu
m

Church 12.6 35.5 31.4 14.1 3.5 3.2 61.4 29.7 8.9

M
ed

iu
m

Church 50.6 33.4 16.0
Bedroom 12.8 34.8 35.4 13.3 2.1 1.6 60.2 31.9 7.9 Bedroom 51.3 32.5 16.2
CelebA 13.0 34.7 35.2 12.9 2.4 1.8 62.3 29.9 7.8 CelebA 49.8 34.3 15.9
FFHQ 13.2 34.1 34.7 12.3 3.2 2.5 61.9 31.1 7.0 FFHQ 52.1 31.6 16.3
txt2img 9.8 31.1 34.3 15.2 5.0 4.1 66.2 29.9 3.9 txt2img 54.3 35.3 10.4

H
ig

h

Church 13.1 38.4 28.1 13.9 3.5 3.0 61.4 29.7 8.9

H
ig

h

Church 42.5 43.0 14.5
Bedroom 13.0 39.3 29.0 12.8 3.1 2.8 60.2 31.9 7.9 Bedroom 43.1 41.6 14.7
CelebA 14.6 39.1 29.3 13.1 2.5 1.4 62.3 29.9 7.8 CelebA 43.7 42.3 14.0
FFHQ 14.1 37.6 30.0 13.8 3.2 1.3 61.9 31.1 7.0 FFHQ 41.3 44.5 14.2
txt2img 10.8 34.0 32.7 15.1 4.8 2.6 66.2 29.9 3.9 txt2img 49.1 41.5 9.4

K and the sub-vector length V, are crucial for the accuracy
of the lookup table, and optimal performance can only be
achieved by considering both factors together.
Benefit of parallel inference engine. We evaluated the
inference speed using only CPU or GPU. The results, as
shown in Figure 12, demonstrate that using only one type
of hardware does not achieve optimal inference speed.
Specifically, using only CPU achieved accelerations of 2.0-
3.9×; using only GPU achieved accelerations of 2.0-3.8×.
Both scenarios performed worse than using the parallel
inference engine on both CPU and GPU. For instance, for
the Bedroom model, when using only the CPU, LUT-Diff
could only achieve a maximum acceleration of 3.6×; on the
GPU, the maximum acceleration was 3.7×. While using both
types of hardware, the acceleration reaches up to 7.2×. This
is primarily because the engine can utilize both CPU and
GPU for cooperative processing, ensuring that computations
on both pieces of hardware do not depend on each other.
Additionally, LUT-Diff minimizes the latency difference
between CPU and GPU, reducing the additional synchroniza-
tion overhead and enhancing the inference performance. For
the text-conditional model, we observed that the acceleration
ratio of LUT-Diff is lower compared to unconditional
models. Through a detailed analysis of the strategies, we
found that, unlike unconditional models, LUT-Diff searches
finer-grained V configurations for the text-conditional model,
resulting in more sub-vectors of length 3. Additionally, the
number of centroids K is also higher. This leads to an
increased number of operations required for table lookup,
resulting in higher latency and reduced acceleration. How-
ever, LUT-Diff consistently outperforms the int8 method,
achieving 4.2× acceleration even under the “Low” strategy.

7.7 Breakdown Analysis

7.7.1 Inference Strategy Breakdown
We analyzed the inference strategies obtained through the
search. Since the differences between strategies lie in the
number of centroids K, we evaluated the proportion of
different K values for each model. Additionally, we assessed
the proportion of subvector lengths V in the strategies for
each model. We used Redmi K60 in this experiment. The
results are shown in Table 3.

As for the sub-vector length V , we observed that V = 3
accounted for the largest proportion across all strategies
and, with smaller V values being more frequent. This is
because larger V introduces greater errors. For example,
in the CelebA model, the proportions of sub-vectors with
lengths 3, 6, and 9 were 62.3%, 29.9%, and 7.8%, respectively
in the “High” strategy. The presence of V = 9 indicates
there are dependencies in the image data, which would be
overlooked if a uniform sub-vector length were used, leading
to higher errors. For the number of centroids K, we found
that as the acceleration ratio increases, smaller K values
become more dominant. This phenomenon aligns with the
modeling in Section §5.2, where K is positively correlated
with computation and lookup latency. Furthermore, we
conducted a more detailed analysis of K distribution and
found that smaller K values were concentrated in the middle
layers of the model, while larger K values appeared near
the input and output layers. This is because input and
output layers process larger image dimensions and are more
sensitive to errors.

7.7.2 Inference Latency Breakdown
We evaluated the latency breakdown of different operations
during inference. The table lookup latency was divided
into three categories: (1) encoding latency, representing the
latency for matching inputs with centroids to obtain lookup
indices; (2) computing latency, for calculating the sub-vectors
with extremely high FIM error; and (3) LUT latency, for
retrieving values using indices. We used Redmi K60 in this
experiment. The results are shown in Table 3.

We find that encoding latency accounts for the largest
proportion in the “Low” and “Medium” strategies, exceeding
50%. As for the “High” strategy, the encoding latency
also accounts for a large proportion, reaching 41%. This
is primarily because matching inputs with centroids involves
MM, as described by Formula 3, which depends on the
input size and the number of centroids. On the other hand,
memory access latency is lower than computation latency,
particularly multiplication latency, making encoding latency
dominant. Additionally, we observed that as the acceleration
ratio increases, the proportion of encoding latency decreases.
This is because the acceleration ratio is influenced by the
number of centroids, i.e., K, and a higher acceleration ratio
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corresponds to a smaller K . Both encoding latency and LUT
latency decrease accordingly; however, since multiplication
latency is higher, the absolute reduction in encoding latency
is more significant, leading to a lower proportion. For
computing latency, its value remains relatively constant
across different acceleration ratios since the computation
is unaffected by K . However, as other latencies decrease, the
proportion of computing latency increases.

8 RELATED WORK

8.1 Approximate Computation in Model Inference

Model quantization. Model quantization, including scalar
quantization (SQ), PQ, and vector quantization (VQ), is to re-
duce the memory footprint and computational requirements
of model inference. SQ [36], [37], [38], [39], [40] quantize each
parameter value with lower precision representation, e.g.,
from float32 to int8. Octo [40] quantizes CNN to INT8 and ac-
celerates on-device inference. XNOR-Net [41] quantizes CNN
with binary values for image classification tasks. PQ [12], [13],
[28], [11] divides each vector into several smaller subvectors
and quantizes them independently. Chen et al. proposed
differentiable PQ for embedding layer [13]. MADDNESS [11]
appies PQ-based lookup table to approximate the MM. LUT-
NN [28] applies differentiable PQ for table lookup through
end-to-end model training. To our best knowledge, there
does not exist work that explores the lookup table to the
whole deep learning model without end-to-end training.
VQ [42], [43], [44], [45], [46] encodes the whole vector in with
centroids. VQ-VAE [47], [48] integrates VQ with variational
autoencoders to encode images, excelling in generating high-
quality outputs for various data types like images and audio.
Gong et al. [49] leverage VQ to quantize the CNN model.

Intermediate results reuse. Several studies have also
explored reusing intermediate results during model inference
to reduce computations. DeepCache [5] reuses computational
results from similar regions within images, which is a cache
design that enhances deep learning inference efficiency by
exploiting temporal locality in video streams and integrating
video compression heuristics to manage data reuse within
models. SMTM [50] is a semantic memory design for CNN
inference that features a hierarchical memory architecture
and novel techniques to adaptively adjust cache size ac-
cording to scene dynamics, thus speeding up inference on
mobile devices. MCDNN [51] reuses results from other apps
in continuous mobile vision domain model serving scenarios
to enable sharing.

In contrast, we, for the first time, enable efficient inference
of diffusion models on mobile devices through lookup table.
Unlike existing methods that focus on model quantization
or intermediate result reuse, our approach replaces computa-
tionally intensive MM with lightweight lookup table-based
indexing, fundamentally reducing computational overhead
on mobile devices.

8.2 Diffusion Model

Diffusion models generate high-quality and diverse images
by predicting the noise in the image and eliminating it.
DDPM [1] gradually adds noise to data during training
to learn the diffusion process. It reverses such a process

by gradually eliminating noise at each step. DDIM [23]
accelerates the denoising process by applying a continuous-
time Ordinary Differential Equation, allowing the model
to generate samples with fewer timesteps. Stable diffusion
stabilizes the diffusion process in latent space [2]. Many other
optimizations focus on the diffusion model architecture and
sampling algorithm [3], [52], [53], [54], [55], [56], [57]. For
example, ScaleCrafter [55] uses re-dilated convolution to
enlarge the perception field of the filter. These efforts mainly
focus on the denoising algorithm and model architecture,
which are orthometric to our approach. Besides image
synthesis, many other diffusion models focus on video
generation [58], [59], [60] and audio generation [61], [62],
[63]. In contrast, our method does not alter the model
architecture or the noise elimination process; instead, it
focuses on optimizing the inference process. As a result, our
approach is orthogonal to existing optimizations of diffusion
models, making it compatible and complementary to them.

8.3 Lookup Table in Deep Learning

Several studies have explored lookup table applications in
deep learning. LUT-NN [28] proposed an end-to-end training
method to learn centroids and tables. Akshay et al. [64] intro-
duced a lookup table-based Processing-In-Memory technique
to accelerate inference by caching the bitline computation re-
sults. DeepGEMM [65] applies lookup table to accelerate 2-bit
quantized model inference. T-MAC [66] applies lookup table
for low-bit quantized large language model deployment on
mobile CPU. In contrast, LUT-Diff proposed a training-free
table learning method and adaptively performs optimized
inference under a given latency budget for the diffusion
model. LUT-Diff can be applied to different layer types,
as demonstrated in the experiments, including transformer,
linear, and convolution layers. In contrast, our method
generates the lookup table using a training-free process,
eliminating the need for complex end-to-end training and
making it significantly more practical for diffusion models.

9 DISCUSSION

Application to other models. In this paper, we propose
LUT-Diff, an optimization approach for diffusion model
deployment on mobile devices. LUT-Diff leverages the
diffusion model’s inherent tolerance to noise in input data
during inference, using an approximation approach for
inputs. For other models, such as CNNs, which do not add
random Gaussian noise during inference, their tolerance to
input noise is lower. Therefore, LUT-Diff could lead to a
decrease in accuracy. Some additional effort may be needed
to apply LUT-Diff to other models, such as end-to-end
fine-tuning. Nevertheless, as our experiments have already
demonstrated the efficiency of LUT-Diff across different
models and datasets, we believe LUT-Diff can promote the
deployment of diffusion models on mobile devices.

On-device lookup table learning. For text-conditional
models, we leveraged the text encoder as a router to
select different lookup tables, adopting the concept of a
mixture-of-experts model. In case the input prompt lacks a
corresponding table, LUT-Diff first performs fast inference
using a quantized model while offloading the lookup table
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learning to a cloud GPU server. Since LUT-Diff follows a
training-free paradigm, on-device centroid learning can be
applied during the device is idle. We leave this part as our
future work.

10 CONCLUSION

In this paper, we have designed and implemented
LUT-Diff, an algorithm-system co-design that aims at
optimizing on-device diffusion model inference through
lookup table. LUT-Diff can efficiently learn the lookup
table and adaptively perform diffusion model inference
according to different budgets. Extensive experiments show
that LUT-Diff can efficiently learn centroids and lookup
tables (at least 3281× faster), generate high-quality images
(less than 0.012 MSE), achieve promising inference accelera-
tion (up to 9.1× acceleration), and reduce inference memory
footprint (up to 70.9%).
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