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ABSTRACT
Concurrent inference execution on heterogeneous processors is
critical to improve the performance of increasingly heavy deep
learning (DL) models. However, available inference frameworks
can only use one processor at a time, or hardly achieve speedup
by concurrent execution compared to using one processor. This is
due to the challenges to 1) reduce data sharing overhead, and 2)
properly partition each operator between processors.

By solving the challenges, we propose CoDL, a concurrent DL
inference framework for the CPU and GPU on mobile devices. It
can fully utilize the heterogeneous processors to accelerate each
operator of a model. It integrates two novel techniques: 1) hybrid-
type-friendly data sharing, which allows each processor to use its
efficient data type for inference. To reduce data sharing overhead,
we also propose hybrid-dimension partitioning and operator chain
methods; 2) non-linearity- and concurrency-aware latency predic-
tion, which can direct proper operator partitioning by building an
extremely light-weight but accurate latency predictor for different
processors.

Based on the two techniques, we build the end-to-end CoDL
inference framework, and evaluate it on different DL models. The
results show up to 4.93× speedup and 62.3% energy saving com-
pared with the state-of-the-art concurrent execution system.
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1 INTRODUCTION
Deep Learning (DL) is now the pillar for diverse mobile applica-
tions. On-device inference is gaining momentum compared to the
on-cloud counterpart, due to the advantages in privacy protection,
internet resilience, and low cloud-operation overhead. However,
current on-device inference can only achieve acceptable respon-
siveness for some simple models, but not for others. For example,
YOLO [23] for object detection takes over two hundred milliseconds
to run on major mobile processors, i.e., mobile CPUs or GPUs. To
improve responsiveness, a nature thought is whether it is benefi-
cial to concurrently utilize heterogeneous processors on a mobile
device.

Fortunately, we identify that the specific design of mobile system-
on-chips (SoCs) provides this opportunity for two causes: 1) com-
parable CPU and GPU performance. Different from server GPUs
which run orders-of-magnitude faster than the CPUs, mobile CPUs
and GPUs have similar performance for DL inference [15, 29]. They
can therefore run side by side; 2) a unified memory. Different from
server machines which usually have separate memories for the
CPU and GPU, the mobile CPU and GPU use a unified memory [12].
It can avoid data copying between different memories.

https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1145/3498361.3538932
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However, current inference frameworks can only use one pro-
cessor at a time, hindered by two major challenges of concurrent
execution (co-execution). The first is how to reduce data sharing
overhead. Albeit with a unified memory, considerable overhead is
still needed to ensure the coherence of shared data. For example,
to run an operator of a model concurrently on the CPU and GPU,
the output of the last operator needs to be shared between the two
processors. This leads to processor synchronization, data mapping,
as well as potential data transformation if different data types are
used by different processors. Without proper strategy, the data
sharing overhead can easily over weigh the gain from concurrency.
The second is how to fairly partition each operator of a model be-
tween processors. Online measurements for different partitioning
candidates are infeasible. A latency predictor which is light-weight
and accurate, and more importantly, aware of all possible overhead
introduced by concurrency is required.

To the best of our knowledge, existing works cannot well ad-
dress the above challenges. 𝜇layer [15] and Optic [29] enable the
co-execution of CPU and GPU on mobile devices. However, for the
first challenge, they use the same data type (i.e., buffer type) for
both the CPU and GPU to simplify data sharing. As we will show
in Sec. 2, this design makes CPU+GPU co-execution even slower
than the GPU alone, due to the use of inefficient data type for the
GPU. For the second challenge, to direct operator partitioning, they
model the operator latency by linear regression on the number
of computations (i.e., FLOPs). Though this model is light-weight,
the prediction accuracy is very poor (< 10%). The reason is that
the FLOPs-based predictor cannot capture the real latency behav-
ior. There are also latency predictors [6, 31, 33] that use complex
black-box machine learning models to capture latency behavior
and achieve high accuracy. However, these models suffer from big
running overhead. For example, the model size of nn-Meter [33]
for a convolution operator is >800MB, too heavy to run on mobile
devices for real-time prediction. Besides, none of these predictors
considers the concurrency-related overhead.

To address the challenges, we propose CoDL, a CPU+GPU con-
current DL inference framework that can fully utilize the heteroge-
neous processors to accelerate a model. The design of CoDL stems
from two key findings. 1) Different processors prefer different data
type for optimal performance. For example, we observe using the
image type on Adreno GPU can achieve 3.5× speedup compared
to the buffer type for convolution. It is necessary to use the ef-
ficient type for each processor for co-execution; 2) To make the
latency predictor both accurate and light-weight, it is imperative
to incorporate platform features into the model, rather than a pure
black-box learning.

Based on the two findings, CoDL integrates two new techniques.
1) Hybrid-type-friendly data sharing. It allows the heterogeneous
processors to use different data types for inference. Then, to reduce
data sharing overhead, we propose hybrid-dimension partitioning
and operator chain methods. Hybrid-dimension partitioning can
select the optimal partitioning dimension for each operator shape to
achieve the tradeoff between data sharing overhead and processor
utilization. Operator chain makes sure the operators on a chain only
require local data to execute rather than the shared data from the
other processor, to avoid data sharing overhead. 2) Non-linearity-
and concurrency-aware latency prediction. CoDL can conduct online
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Figure 1: The latency of three DL models executed on CPU,
GPU and CPU+GPU, in MACE.

and fair operator partitioning by building a light-weight but accu-
rate latency predictor. Our insight is that the high complexity of
other learned latency predictors is to capture the non-linear latency
response caused by different algorithms and execution blocks. We
therefore analytically formulate the calculation of blocks for each
algorithm to extract the non-linearity. Only the linear component
is learned by an extremely light-model (∼500 B v.s. 800MB of nn-
Meter) linear-regression model. Besides, our predictor is the first to
consider all the concurrency-related overhead.

Based on the two techniques, we build the end-to-end CoDL
framework. For a given model, the best data partitioning and shar-
ing plan for each operator can be worked out based on the predictor.
CoDL then coordinates the processors to execute the plan.We imple-
ment CoDL based on the state-of-the-art (SOTA) mobile inference
framework MACE [19]. The experiments on commercial off-the-
shelf (COTS) mobile devices, including Snapdragon 855, 865 and
888, and Kirin 990, demonstrate that CoDL can achieve on-average
3.43× speedup and 62.3% energy saving in comparison with the
SOTA co-execution system. By taking the non-linear features into
account, our predictor achieves 86.21% and 82.69% accuracy on
predicting the runtime latency of operators on CPU and GPU, re-
spectively, with low inference overhead (< 1 ms for an operator).
Furthermore, with one-time collected data samples (6000 samples
with running time less than 1.5 hours), the predictor can be trained
in an on-device manner with latency ranging from 1 to 2 seconds.

The main contributions are as follows:

• In-depth analysis on the performance bottleneck of concur-
rent CPU+GPU execution;
• Propose hybrid-type-friendly data sharing between CPU
and GPU, which utilizes hybrid-dimension partitioning and
operator chain to reduce sharing overhead.
• Propose the extremely light-weight but accurate non-linearity-
and concurrency-aware latency prediction.
• Implement the end-to-end CoDL framework and demon-
strate that it outperforms the state-of-the-art solutions.

2 MOTIVATION AND ANALYSIS
To direct CoDL design, we first explore the performance bottle-
necks of processor co-execution by analyzing the SOTA inference
systems. We evaluate 𝜇Layer [15] and MACE [19] as the SOTA
co-execution and single-processor execution system, respectively.
This section shows the results on Snapdragon 855 for example.
Fig. 1 compares their inference latency for different models. Sur-
prisingly, the CPU+GPU co-execution of 𝜇Layer is slower than the



CoDL: Efficient CPU-GPU Co-execution for Deep Learning Inference on Mobile Devices MobiSys ’22, June 25-July 1, 2022, Portland, OR, USA

< 2 5 6 , 2 5 6 , 6 4 , 6 4 > < 1 2 8 , 1 2 8 , 6 4 , 6 4 > < 6 4 , 6 4 , 6 4 , 6 4 >0
2 0
4 0
6 0
8 0

1 0 0

La
ten

cy 
(m

s)

C o n v  S h a p e  < H , W , I C , O C >

 B u f f e r
 I m a g e

Figure 2: Latency comparison of using buffer and image data
type for 3×3 convolution. The height (𝐻 ) and width (𝑊 ) of
the input feature maps range from 64 to 256; the input chan-
nels (𝐼𝐶) and output channels (𝑂𝐶) are both 64.
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Figure 3: Latency components of co-execution of the
CPU and GPU. The op is a 3×3 convolution with shape
<112,112,32,64>. The partition ratio is 0.5. DT: Data Transfor-
mation, M: Mapping, UM: unmapping.

CPU or GPU alone of MACE. For PoseNet [35], it even leads to
∼ 2× slowdown.

We analyze the systems in depth and expose the performance
issues of the current co-execution system: 1) the use of unified
data type for different processors; 2) the neglect of data sharing
overhead; and 3) the unbalanced workload partitioning. We will
next discuss these issues in detail, as well as the implications for
CoDL design.

A unified data type is not efficient for heterogeneous pro-
cessor co-execution.To simplify data sharing, current co-execution
systems use a common data type for different processors. For ex-
ample, the buffer type is supported by both the CPU and GPU, and
thus used by 𝜇Layer. Buffer type organizes data into contiguous
and pointer-accessible chunks. However, we identify that the image
type can be much more efficient than buffer on Adreno GPUs. Im-
age type organizes data into multi-dimensional chunks to facilitate
rendering tasks. It leverages the fast L1 texture cache on GPU to
accelerate the data access. Fig. 2 illustrates the performance dif-
ference of using image and buffer type for 3×3 convolution with
different input shapes. The latency is reduced by 3.5× using the
image type, compared to the buffer type.

Therefore, to fully utilize each heterogeneous processor, the
corresponding efficient data type should be used.
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Figure 4: The latency of
computing and data shar-
ing for a 1×1 convolution
with shape <52, 52, 256,
128>.
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Figure 5: The partitioning
ratio and latency of a 3×3
convolution with shape
<240,320,64,128>.

The data sharing overhead for co-execution is not negli-
gible, especially for small operators. Co-execution introduces
data sharing overhead to make sure data coherence between pro-
cessors. It is overlooked by current co-execution systems. Fig. 3
demonstrates the process and latency components of an operator
co-execution on the CPU and GPU. Assuming the operator input is
generated by the last operator on the GPU and now shared between
the CPU and GPU for co-execution. On top of operator computa-
tion, the extra overhead is from 1) data transformation, if different
data type is used; 2) data mapping, which maps the input to the
CPU address space; 3) synchronization, which informs the other
processor the completion of mapping (pre-sync) or computation
(post-sync).; and 4) data unmapping, which unmaps the output
from the CPU address space.

We identify that this overhead is not negligible. Particularly for
small operators, it easily becomes the dominant overhead and off-
sets the gain brought by the CPU-GPU co-execution. Fig. 4 demon-
strates an example. Given that the co-execution reduces the exe-
cution latency from 1126𝜇𝑠 to 599𝜇𝑠 , the data sharing overhead
contributes 1074 𝜇𝑠 , leading to a 1.5× slowdown.

Therefore, the co-execution system should aim to reduce the
overhead and concurrently execute the operator only when the
gain outperforms the overhead.

Balancedworkload partitioning for co-execution requires
a light-weight and accurate latencypredictor.Current co-execution
systems usually use predicted latency by a light-weight model to
direct the workload partitioning between processors. For instance,
𝜇Layer uses a FLOPs-based linear model to predict the latency.
The light-weight latency model is suitable for the online prediction.
However, it is too inaccurate (< 10% according to our measurements,
details in Sec. 7).

The inaccurate latency prediction in turn leads to the poor infer-
ence performance, due to the unbalanced workload. Fig. 5 demon-
strates an operator of a popular model as an example. The FLOPs-
based predictor leads to a 4× slowdown by allocating 60% of the
operator on the GPU, given that the optimal partitioning ratio is
90%.

The reason for the inaccurate prediction is that the latency is
not simply a linear relationship with FLOPs, but greatly impacted
by the platform features such as the algorithm implementation and
data block size [26, 33]. As shown in Fig. 6, the latency shows a
non-linear response as the FLOPs increases for the GPU and CPU.
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Figure 6: Non-linear latency response as FLOPs increases (by
increasing channel and height) on the (a) GPU and (b) CPU.
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Figure 7: System architecture and workflow of CoDL.

There are also works aiming for the accurate latency prediction,
e.g., nn-Meter [33], which use black-box machine learning meth-
ods to learn the latency response based on a number of operator
hyperparameters. However, suffering from the lack of knowledge
on the underlying platform features, the black-box methods obtain
satisfactory accuracy at the cost of large model size (e.g., over 800
MB for convolution by nn-Meter) and infeasible execution time
(e.g., more than 80 ms on a PC by nn-Meter). It is unpractical to be
deployed on mobile devices.

Therefore, a latency predictor that can incorporate platform
features and thus be both light-weight and accurate is required for
the co-execution system.

3 CODL OVERVIEW
To achieve the optimal performance of co-execution on heteroge-
neous processors, we raise three design principles: 1) fully utilizing
the computing capability of each processor; 2) minimizing the extra
overhead caused by the data sharing, i.e., the data transformation,
mapping and synchronization; 3) best partitioning and balancing
the workload among heterogeneous processors.

Guided by the principles, we design CoDL. It runs in two phases,
i.e., the offline phase and online phase, as shown in Fig. 7.

In the offline phase, CoDL designs a light-weight but effective
latency predictor to direct the operator partitioning in the online
phase. The predictor can achieve both light-weight and effective
because 1) it considers all the data sharing overhead including
data transformation, mapping, and synchronization (Sec. 5.1); 2) it
analytically formulates the non-linear latency response caused by
the platform features, and only needs to learn the latency of the
basic execution unit by an extremely light-weight linear regression
model for each kernel implementation (Sec. 5.2).

The online phase consists of two modules, i.e., the operator
partitioner and the operator co-executor.

The role of operator partitioner is to work out the optimal oper-
ator partitioning plan for the input DL model. Based on the latency
predictor, it employs two techniques, i.e., hybrid-dimension parti-
tioning and operator chain, to fulfill this role. The partitioner first
finds the best partitioning dimension (either height or output chan-
nel) and ratio (e.g., 0.1, 0.2, ...) for each operator as the base plan, by
the hybrid-dimension partitioning technique (Sec. 4.1). According
to the base plan, it searches for the operators to chain up by the
operator chain technique, so that the operators on a chain require
no shared data (Sec. 4.2). The final partitioning plan from the parti-
tioner is the set of found chains, each with the chained operators
and chain settings i.e., partitioning ratio and dimension. With the
plan, the model weights are pre-arranged for the GPU and CPU to
avoid re-transformation for each inference invocation.

The operator co-executor coordinates the synchronized execu-
tion of operators according to the partitioning plan, using processor-
friendly data type for different processors. As shown in Fig. 8, at
the beginning of a chain, CoDL first shares the data between the
CPU and GPU. Assuming the GPU-friendly type as the default
data type, CoDL transforms the partitioned input feature map from
the GPU-friendly type (e.g., the image type on Adreno GPU) to the
CPU-friendly type. Then, the CPU and GPU execute all operators in
one chain concurrently. At the end of a chain, the GPU transforms
the data generated on the CPU back to GPU-friendly type, and
combine with GPU output together as the input of the following
chain.

Next, we discuss the key techniques proposed in CoDL, hybrid-
type friendly data sharing and the non-linearity- and concurrency-
aware latency prediction in detail.

4 HYBRID-TYPE FRIENDLY DATA SHARING
CoDL supports the use of efficient data type for each processor.
However, the challenge is that it further increases data sharing
overhead. This section introduces the two data sharing optimiza-
tion techniques of CoDL, i.e., hybrid-dimension partitioning and
operator chain. They accelerate operator co-execution by achieving
the tradeoff between data sharing and computation overhead.

4.1 Hybrid-dimension partitioning
Performance impact analysis. It is possible to partition the ten-
sors of an operator along different dimensions, including𝑂𝐶 ,𝐻 and
𝑊 , for co-execution. Fig. 9 illustrates the partitioning along𝑂𝐶 and
𝐻 for example. Different dimensions lead to different performance
impact.

Firstly, partitioning dimension impacts data sharing overhead.
As discussed in Sec. 2, there is considerable overhead to ensure
the coherence of shared data between processors. It is therefore
important to reduce the amount of shared data. Model weights
are consistent during inference. They can be pre-allocated on each
processor, and no need to be shared dynamically. However, the input
feature map for each operator needs to be shared dynamically, since
it is generated by the last operator during inference.
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Figure 10: CPU+GPU speedup (over CPU_only) comparison
between partitioning on𝑂𝐶 and𝐻 , for convolution in YOLO
model. The partitioning ratio is 0.5.

Therefore, considering data sharing overhead, partitioning on
𝐻 dimension is preferable than 𝑂𝐶 . As Fig. 9 shows, for 𝑂𝐶 parti-
tioning, the whole input feature map is shared between the CPU
and GPU. By comparison, only a partial feature map (and also the
padding data for filter processing) is shared for 𝐻 partitioning.

Secondly, partitioning dimension impacts processor utilization.
Though partitioning on 𝐻 has less data sharing overhead, we find
that it does not always mean less running time. We take several
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Figure 11: The output is divided intoworkgroups. Eachwork
group is scheduled to run on aGPU core in the unit of warps.

typical convolution operators from YOLO [23] to show the per-
formance difference in Fig. 10. 𝐻 partitioning does achieve higher
speedup than 𝑂𝐶 for the first three convolutions. For example, the
<104, 104, 64, 128> convolution has 1.89× speedup by co-execution
(compared to CPU_only) in 𝐻 partitioning, while only 1.33× in
𝑂𝐶 partitioning. Conversely, the <13, 13, 1024, 1024> convolution
achieves higher speedup in𝑂𝐶 partitioning than 𝐻 (1.89× vs 1.43×
respectively).

The reason is that 𝐻 partitioning may reduce processor utiliza-
tion compared to 𝑂𝐶 , depending on the operator shape. To utilize
the inter-core and intra-core parallelism of a processor, the tensors
of an operator need to be divided into blocks and scheduled to run
on different cores. Take the GPU as an example shown in Fig. 11.
A block named as a work group is scheduled to run on a GPU core.
To efficiently utilize the many ALUs in a core, the basic execution
unit named as a warp executes the same instruction for a number
of threads (e.g., 64 or 128) simultaneously. Therefore, a work group
should provide enough threads to fill up the warps. Or there will
be idle ALUs.

The size of a work group on the𝑂𝐶 dimension is normally small
(e.g., 4) to avoid stressing cache by many filters. When 𝐻 and𝑊 are
small, e.g., <13, 13> in Fig. 10, there are not enough threads to fill
up the warps, leading to lower GPU utilization and performance.

Thirdly, partitioning dimension impacts data access overhead.
For faster data access, the partitioning dimension should be consis-
tent with the tensor layout and make sure that the shared data is
continuously stored in memory. For example, the [𝐻 ,𝑊 , 𝐼𝐶] layout
for feature maps prefers partitioning on 𝐻 rather than𝑊 .

Determining the partitioning dimension. Based on the anal-
ysis above, the partitioning dimension should be determined for
each operator shape, according to its impact on data sharing over-
head and processor utilization. We thus propose hybrid-dimension
partitioning for CoDL. It integrates the impacted factors into the
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latency predictor (detailed in Sec. 5). Given the input operator set-
tings and a partitioning plan in dimension and ratio 𝜌 , the predictor
outputs the total co-execution latency (including both data sharing
and computing overhead). Based on the predicted latency, CoDL
can rapidly evaluate different partitioning plans online, and find the
optimal partitioning dimension and ratio for each operator of a DL
model. Specially, CoDL predicts the total latency of a given operator
across various partitioning plans (i.e., the H and OC dimension, and
the ratio from 0 to 1). The determined partitioning dimension is the
one that achieves the least predicted latency.

4.2 Operator chain
Instead of sharing data after each operator, we propose the operator
chain technique to reduce the number of operators requiring shared
data. As Fig. 8 shows, the data only needs to be shared at the
beginning and ending of a chain. Other operators in a chain use
locally generated data but no data from the other processor.

Performance impact analysis. The challenge for operator
chain is how to rapidly decide which operators to chain up in a DL
model. Improperly chaining operators can have negative impact on
performance, due to two reasons.

Firstly, the partitioning ratio of a chain may not be ideal for each
of its operator’s performance. The ratio is a compromise of all the
operators in a chain.

Secondly, the longer the chain is, themore padding and thusmore
additional computations there are. Convolution requires padding
on the boundary of a feature map for filter processing. Take padding
on the 𝐻 dimension as an example, the padding size (𝑃 ), shown in
Eq. 1, depends on the settings of a convolution operator, i.e., the

input and output (𝐻𝐼 and 𝐻𝑂 ), filter size (𝐹 ), and stride (𝑆).

𝑃 = 𝑆 × (𝐻𝑂 − 1) − 𝐻𝐼 + 𝐹 (1)

As Fig. 12 shows, to add one more operator in a chain, the padding
will be propagated along the chain to the first operator. This adds
more and more redundant computations to each operator.

Fig. 13 quantizes this padding effect using a chain of different
length from YOLO. Compared with no-chain (i.e., share data after
each operator), our chain method significantly reduces data sharing
overhead. When the chain length is 9, the data sharing overhead
is only 9% of no-chain. However, due to padding, the computation
latency is increased by 61%, resulting in more latency compared to
no-chain. The optimal length in this example should be 8 with 42%
improved performance compared to no-chain.

Chain searching algorithm. To find the chains with the best
tradeoff between data sharing and computation overhead for a
DL model, we design the chain searching algorithm as shown in
Algorhtim 1. It is a greedy-like algorithm for this NP problem, which
searches for chains with the least latency up to the current operator.

The input of the algorithm is the optimal partitioning plan
𝑃𝑎𝑟𝑃𝑙𝑎𝑛 for each operator without chain, stored in the data flow
order (results from Sec. 4.1). The output 𝐶ℎ𝑎𝑖𝑛𝑠 is a set of opera-
tor chains with least total latency. Each chain is with settings in
partitioning dimension 𝑑𝑖𝑚, ratio 𝜌 , and chained operators that
have been properly padded according to Eq 1. The design idea is
that starting from an operator not in any chain 𝑜𝑝ℎ𝑒𝑎𝑑 (Line 2, 18),
for each of the potential 𝜌 , the algorithm keeps chaining up more
operators and calculating the gain versus no chain. This process
stops when there is no gain by adding one more operator. During
the process, the 𝜌 and the according chain with the max latency
gain𝐶ℎ𝑎𝑖𝑛𝑚𝑎𝑥𝐺𝑎𝑖𝑛 will be recorded (Line 15,16). It will be added to
𝐶ℎ𝑎𝑖𝑛𝑠 after traversing all the potential 𝜌 (Line 17). The algorithm
then starts to search for the next chain (Line 18).

The potential 𝜌 is from a range around the optimal 𝜌 for the
first operator of the chain, i.e., [𝜌ℎ𝑒𝑎𝑑 − 𝛿, 𝜌ℎ𝑒𝑎𝑑 + 𝛿] (Line 5). To
add the next operator to the chain, we need to adjust each of the
preceding operators on the chain to the new padding size (Line
12), and recalculate the total latency by using the latency predictor
(Line 13, the true flag is to mark a chained operator). Given that
the algorithm checks each operator for a number of times equal to
the size of the ratio range, the search space is 2 × 𝑁𝑜𝑝 × (𝛿/0.1)
where 𝑁𝑜𝑝 denotes the number of operators in the model. Note
that 𝛿 limits the searching range of the partitioning ratio. If 𝛿 is too
large, the search space of Algorithm 1 increases but barely brings
improvement on inference performance. If 𝛿 is too small, it cannot
find the optimal partitioning ratio. We set 𝛿 to 0.3 based on our
evaluation.

5 NON-LINEARITY- AND
CONCURRENCY-AWARE LATENCY
PREDICTION

The partitioning and operator chain techniques of CoDL rely on
latency prediction of operator co-execution. However, the challenge
is how to achieve both accurate and light-weight at the same time.
As discussed in Sec. 2, available latency predictors [6, 7, 10, 15,
22, 32, 33] cannot well serve this purpose due to two reasons: 1)
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Algorithm 1: Chain searching algorithm
input :𝑃𝑎𝑟𝑃𝑙𝑎𝑛 the partitioning plan of operators in the

model without chain.
output :𝐶ℎ𝑎𝑖𝑛𝑠 the operator chain settings.

1 𝑛𝑒𝑥𝑡 ←0;
2 (𝑜𝑝ℎ𝑒𝑎𝑑 , 𝑑𝑖𝑚ℎ𝑒𝑎𝑑 , 𝜌ℎ𝑒𝑎𝑑 ) ← 𝑃𝑎𝑟𝑃𝑙𝑎𝑛[𝑛𝑒𝑥𝑡 + +];
3 while 𝑜𝑝ℎ𝑒𝑎𝑑 is not NULL do
4 𝑇𝑔𝑎𝑖𝑛 , 𝑇𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ← 0, 𝑖←𝑛𝑒𝑥𝑡 ;
5 foreach 𝜌 ∈ [𝜌ℎ𝑒𝑎𝑑 − 𝛿, 𝜌ℎ𝑒𝑎𝑑 + 𝛿] do
6 𝐶ℎ𝑎𝑖𝑛𝑐𝑢𝑟 .initialize(𝑜𝑝ℎ𝑒𝑎𝑑 , 𝑑𝑖𝑚ℎ𝑒𝑎𝑑 , 𝜌);
7 𝑇𝑐ℎ𝑎𝑖𝑛 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (𝑜𝑝ℎ𝑒𝑎𝑑 , 𝑑𝑖𝑚ℎ𝑒𝑎𝑑 , 𝜌, 𝑓 𝑎𝑙𝑠𝑒);
8 while 𝑇𝑔𝑎𝑖𝑛 ≥ 0 and 𝑖 < 𝑁𝑜𝑝 do
9 (𝑜𝑝𝑛𝑒𝑥𝑡 , 𝑑𝑖𝑚𝑛𝑒𝑥𝑡 , 𝜌𝑛𝑒𝑥𝑡 ) ← 𝑃𝑎𝑟𝑃𝑙𝑎𝑛[𝑖 + +];

10 𝑇𝑛𝑜𝐶ℎ𝑎𝑖𝑛←𝑇𝑐ℎ𝑎𝑖𝑛 +
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (𝑜𝑝𝑛𝑒𝑥𝑡 , 𝑑𝑖𝑚𝑛𝑒𝑥𝑡 , 𝜌𝑛𝑒𝑥𝑡 , 𝑓 𝑎𝑙𝑠𝑒);

11 𝐶ℎ𝑎𝑖𝑛𝑐𝑢𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑝𝑛𝑒𝑥𝑡 , 𝑑𝑖𝑚ℎ𝑒𝑎𝑑 , 𝜌);
12 𝐴𝑑 𝑗𝑢𝑠𝑡𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝐶ℎ𝑎𝑖𝑛𝑐𝑢𝑟 );
13 𝑇𝑐ℎ𝑎𝑖𝑛 ←∑

𝑜𝑝∈𝐶ℎ𝑎𝑖𝑛𝑐𝑢𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (𝑜𝑝, 𝑑𝑖𝑚, 𝜌, 𝑡𝑟𝑢𝑒);
14 𝑇𝑔𝑎𝑖𝑛 ← 𝑇𝑛𝑜𝐶ℎ𝑎𝑖𝑛 −𝑇𝑐ℎ𝑎𝑖𝑛 ;
15 if 𝑇𝑔𝑎𝑖𝑛 > 𝑇𝑚𝑎𝑥𝐺𝑎𝑖𝑛 then
16 𝐶ℎ𝑎𝑖𝑛𝑚𝑎𝑥𝐺𝑎𝑖𝑛,𝑇𝑚𝑎𝑥𝐺𝑎𝑖𝑛, 𝑛𝑒𝑥𝑡 ←

𝐶ℎ𝑎𝑖𝑛𝑐𝑢𝑟 , 𝑇𝑔𝑎𝑖𝑛, 𝑖;

17 𝐶ℎ𝑎𝑖𝑛𝑠 .append(𝐶ℎ𝑎𝑖𝑛𝑚𝑎𝑥𝐺𝑎𝑖𝑛);
18 (𝑜𝑝ℎ𝑒𝑎𝑑 , 𝑑𝑖𝑚ℎ𝑒𝑎𝑑 , 𝜌ℎ𝑒𝑎𝑑 ) ← 𝑃𝑎𝑟𝑃𝑙𝑎𝑛[𝑛𝑒𝑥𝑡 + +];
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Figure 14: The latency distribution of various sizes of shared
data for (a) data transformation and mapping; (b) pre-sync.

none of these predictors considers the data sharing overhead; 2) the
predictors cannot be accurate and light-weight at the same time,
due to the missing knowledge of underlying platforms.

This section introduces our predictor design. It can achieve both
accurate and light-weight by 1) including all the data-sharing over-
head for co-execution; 2) analytically formulating the non-linear
latency response caused by platform features, which lowers the
difficulty of learning. The input of the predictor, as shown in Alg. 1,
is the operator hyperparameter (𝐻 ,𝑊 , 𝐼𝐶 , 𝑂𝐶 , 𝐹 , 𝑆), 𝑑𝑖𝑚, 𝜌 , and
a flag for chain or not. The output is the predicted latency of the
operator co-execution on a given platform.

5.1 Latency composition of concurrency
As shown in Fig. 3, the complete steps for an operator co-execution
includes: data transformation, mapping, pre-sync, computing, post-
sync, and unmapping. This subsection discusses how to model the
data-sharing-related latency.

We first measure the latencies for a range of feature map config-
urations to learn the latency of data sharing. The measured time of
transformation, mapping, and unmapping steps are the according
GPU kernel/command running time. Themeasured time of pre-sync
is the timing difference of GPU mapping completion and the CPU
acknowledgement of the completion. Similarly, the measured time
of post-sync is the timing difference of CPU computing completion
and the GPU acknowledgement of the completion.

Our measurement shows that mapping, synchronization, and
data transformation can contribute notable overhead in the operator
co-execution on the CPU and GPU. They cannot be ignored in the
predictor. By comparison, the overhead of unmapping and post-
sync are marginal (∼50 𝜇s), which are excluded in our predictor.
Therefore, the total predicted latency of an operator co-execution𝑇
is as Eq. 2, where𝑇𝑡𝑟𝑎𝑛𝑠 ,𝑇𝑚𝑎𝑝 ,𝑇𝑝𝑠𝑦𝑛𝑐 , and𝑇𝑐𝑜𝑚𝑝 denote the latency
of the data transformation, mapping, pre-sync and computation,
respectively. The data sharing overhead (i.e.,𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝑚𝑎𝑝 +𝑇𝑝𝑠𝑦𝑛𝑐 )
is only added when the operator is not in a chain.

𝑇 = 𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝑚𝑎𝑝 +𝑇𝑝𝑠𝑦𝑛𝑐 +max(𝑇𝑐𝑝𝑢
𝑐𝑜𝑚𝑝 ,𝑇

𝑔𝑝𝑢
𝑐𝑜𝑚𝑝 ) (2)

As shown in Fig. 14a, 𝑇𝑡𝑟𝑎𝑛𝑠 and 𝑇𝑚𝑎𝑝 have a clear linear re-
lationship with the data size, because they are mostly memory
operations. We use linear regression with data size as the feature
to learn the latency for 𝑇𝑡𝑟𝑎𝑛𝑠 and 𝑇𝑚𝑎𝑝 in our predictor. For the
pre-sync overhead 𝑇𝑝𝑠𝑦𝑛𝑐 , there is no clear pattern according to
our measurements, as demonstrated in Fig. 14b. 𝑇𝑝𝑠𝑦𝑛𝑐 mainly de-
pends on the driver implementation from vendors. Thus, we use
the measured upper bound (1𝑚𝑠) as 𝑇𝑝𝑠𝑦𝑛𝑐 in our predictor.

5.2 Non-linearity-extracted computing latency
prediction

As discussed in Sec. 2, the high complexity of current accurate
latency predictor is to capture the non-linear latency response to
the scaling of operator hyperparameters. To reduce the complexity,
we first analyze the reasons for the non-linearity and formulate it
directly in the predictor. The non-linear latency response is mainly
due to two reasons.

Firstly,different algorithmshave different latency response
to hyperparameter scaling. Convolution operators employ dif-
ferent algorithms depending on the hyperparameters, such asWino-
grad for 3×3 and direct convolution for 5×5 convolution.

Secondly, data blocking on different levels leads to stepped
latency response. As discussed in Sec. 4.1, there are two levels of
blocking for a GPU kernel execution i.e., workgroup and warp for
inter-core and intra-core parallelism respectively. If the tensor size
cannot be evenly divided by the blocking size, there will be idle
ALUs or cores. For example, if the size of a work group is (2,5,10)
i.e., 100 threads, and the warp size is 64, the work group has to
be executed in two warps. This blocking can thus cause stepped
latency response.
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Table 1: Latency prediction of convolution algorithms for a
partitioned operator on a given processor.

Params.

𝐻 ,𝑊 : height and width,
𝐼𝐶 ,𝑂𝐶 : the number of input and output channels,
𝐹 : filter size,
Ω: the number of cores of the processor,
Φ𝑐 : the blocking size for a core 𝑐 ,
𝜙𝑐 : the size of a basic execution unit in 𝑐 ,
Φ𝑤𝑡 : the size of a Winograd tile,
Ψ: the number of Winograd tiles,
𝑡𝑐 : time of a basic unit for direct convolution,
𝑡𝑝 : time of a basic unit for data packing,
𝑡𝑚𝑚 : time of a basic unit for matrix multiplication,
𝑡𝑖𝑡 , 𝑡𝑜𝑡 : time of a basic unit for transforming

in-&out-feature map.
Direct 𝑇𝑐𝑜𝑚𝑝 = ⌈𝐻 ·𝑊 ·𝑂𝐶

Φ𝑐 ·Ω ⌉ ⌈ Φ𝑐
𝜙𝑐
⌉𝑡𝑐

GEMM

𝑇𝑐𝑜𝑚𝑝 = 𝑇𝑝𝑎𝑐𝑘𝑖𝑛𝑔 +𝑇𝑀𝑀

𝑇𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = ⌈𝐻 ·𝑊 ·𝐼𝐶 ·𝐹 2
Φ𝑐 ·Ω ⌉ ⌈ Φ𝑐

𝜙𝑐
⌉𝑡𝑝

𝑇𝑀𝑀 = ⌈𝐻 ·𝑊 ·𝐼𝐶 ·𝑂𝐶 ·𝐹 2
Φ𝑐 ·Ω ⌉ ⌈ Φ𝑐

𝜙𝑐
⌉𝑡𝑚𝑚

Winograd

𝑇𝑐𝑜𝑚𝑝 = 𝑇𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠 + (Φ𝑤𝑡 + 2)2𝑇𝐺𝐸𝑀𝑀+
+𝑇𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠

Ψ = ⌈ 𝐻
Φ𝑤𝑡
⌉ ⌈ 𝑊

Φ𝑤𝑡
⌉

𝑇𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠 = ⌈ 𝐼𝐶 ·Ψ· (Φ𝑤𝑡 +2)2
Φ𝑐 ·Ω ⌉ ⌈ Φ𝑐

𝜙𝑐
⌉𝑡𝑖𝑡

𝑇𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠 = ⌈𝑂𝐶 ·Ψ·Φ2𝑤𝑡
Φ𝑐 ·Ω ⌉ ⌈ Φ𝑐

𝜙𝑐
⌉𝑡𝑜𝑡

Similarly, for the CPU, the tensor has to be divided into blocks
and assigned to run on each CPU core. Then, to utilize the SIMD
(Single Instruction Multiple Data) units, there is also a basic ex-
ecution unit within a core, such as 8×8 implemented in TFLite
framework [26].

Formulating non-linearity. Based on the analysis above, we
formulate the non-linearity caused by different algorithms and
blocking, and abstract the kernel latency prediction in Eq. 3.

𝑇𝑘𝑒𝑟𝑛𝑒𝑙 = ⌈
𝑆𝑖𝑧𝑒𝑜𝑢𝑡𝑝𝑢𝑡

𝑆𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘 ·𝐶𝑜𝑟𝑒#
⌉ · ⌈ 𝑆𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

𝑆𝑖𝑧𝑒𝑏𝑎𝑠𝑖𝑐𝑈𝑛𝑖𝑡

⌉ · 𝑡𝑏𝑎𝑠𝑖𝑐𝑈𝑛𝑖𝑡 (3)

𝑆𝑖𝑧𝑒𝑜𝑢𝑡𝑝𝑢𝑡 is the partitioned output size, which is calculated for
each processor by the predictor input i.e., operator hyperparameter,
𝑑𝑖𝑚 and 𝜌 . 𝑆𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘 is the blocking size for inter-core parallelism
given by the inference runtime. 𝑆𝑖𝑧𝑒𝑏𝑎𝑠𝑖𝑐𝑈𝑛𝑖𝑡 is the size of a basic
execution unit for intra-core parallelism given by the inference run-
time or hardware parameters. Table 1 shows the deduced equations
and detailed calculation process from Eq. 3 for each convolution
algorithm.

The only learned variable in the equation is 𝑡𝑏𝑎𝑠𝑖𝑐𝑈𝑛𝑖𝑡 , the time
of executing a basic unit on a given processor. It depends on the op-
erator hyperparameter, kernel implementation, hardware resources,
and scheduling, which is difficult to be analytically modeled. We
thus learn it for each kernel implementation from real processor
profiling. Since the non-linearity has been extracted, an extreme
light-weight linear regression model can be used to learn 𝑡𝑏𝑎𝑠𝑖𝑐𝑈𝑛𝑖𝑡

and achieve high accuracy. The features for this linear model is
(𝐻 ,𝑊 , 𝐼𝐶 , 𝑂𝐶). Since it is very light, the model can even cheaply

be trained on the target mobile device through gradient descent
(results in Sec. 7.5).

Depending on the algorithm, one operator can be implemented
in several kernels. The computing time on a processor𝑇𝑐𝑜𝑚𝑝 in Eq. 2
is thus the sum of all the kernels. For example as shown in Tab. 1,
the Winograd algorithm on the GPU includes the input and output
transformation kernels before and after the matrix multiplication
kernel, and thus in Eq. 2, 𝑇𝐺𝑃𝑈

𝑐𝑜𝑚𝑝 = 𝑇𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠 + 𝑇𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑎𝑛𝑠 +
𝑇𝐺𝐸𝑀𝑀 . For the GEMM algorithm on the CPU, there is normally
a data packing kernel before the computation to increase the data
locality, and thus 𝑇𝐶𝑃𝑈

𝑐𝑜𝑚𝑝 = 𝑇𝑝𝑎𝑐𝑘𝑖𝑛𝑔 +𝑇𝐺𝐸𝑀𝑀 . Direct convolution
algorithm is normally implemented by one kernel.

6 IMPLEMENTATION
We implement CoDL based on MACE [19], which is a widely used
DL inference framework on mobile devices and also has the SOTA
performance shown in our evaluation. We integrate the core func-
tionalities of CoDL i.e., the hybrid-type-friendly data sharing and
the light-weight latency predictor into Mace. We deliver such func-
tionalities via a pre-compiled shared library. Thus, CoDL can be
also easily adapted into other inference frameworks, e.g., Tensor-
flow Lite [17], MNN [20], etc. In total CoDL consists of 3292 lines
of C++ code. CoDL supports the co-execution of commonly used
operators in DL models, including convolution, fully connection,
and pooling.

To enable the hybrid-type-friendly data sharing on both CPU
and GPU, we build the shared library based on OpenCL APIs [21].
Specifically we use Buffer and Image2D to create the buffer and
image type data, respectively. We implement an OpenCL kernel
to transform the data between buffer and image type. Once the
data is transformed, we use enqueueMapBuffer to map the data
and enqueueUnmapMemO- object to unmap.

To implement the light-weight latency predictor, we make use
of the multi-feature linear regression model [27]. To train the pre-
dictor, we collect the samples of data transformation, mapping, and
computation. For data transformation and mapping, we use the
data size as the feature. For computation, we use the (𝐻,𝑊 , 𝐼𝐶,𝑂𝐶)
as the features.

Summarily, we collect about 6,000 samples from five DL models
in Sec. 7 in total. We fix the CPU and GPU frequency as maximum
value during the sampling. We run the operators from 𝐻 and 𝑂𝐶
dimensions with partitioning ratio from 0.1 to 1. The sample ranges
of 𝐻𝑊 , 𝐼𝐶 , 𝑂𝐶 , 𝐹 and 𝑆 are (1,640), (3,4096), (32,4096), (1,7) and
(1,2), respectively. We use 70% of the samples as the training set,
the rest is used for testing. We set the learning rate to 0.1, and we
train the predictor for around 1,000 epochs.

7 EVALUATION
In this section, we evaluate CoDL. We first introduce our evaluation
setup. Then we present the overall performance of CoDL. Next we
evaluate each key component in detail i.e., the hybrid-dimension
partitioning, the operator chain, and the latency predictor. We
also discuss the system overhead of CoDL, including the energy
consumption and the memory usage.
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Figure 15: Overall performance of CoDL and baselines on Snapdragon platforms.

Table 2: Hardware used in the evaluation.

Device SoC CPU GPU

Xiaomi 9 Snapdragon 855 Kyro 485 Adreno 640
Redmi K30 Pro Snapdragon 865 Kyro 585 Adreno 650
Xiaomi 11 Pro Snapdragon 888 Kyro 680 Adreno 660
Honor V30 Pro Kirin 990 Cortex-A76 Mali-G76
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Figure 16: Performance of CoDL and baselines on Kirin 990.

7.1 Experiment setup
Platforms. We evaluate CoDL on various devices as detailed

in Table 2. They are equipped with the dominated mobile SoCs,
particularly Snapdragon 855 [1], 865 [2], 888 [3] and Kirin 990 [4].

Models. To evaluate the performance of CoDL, we choose vari-
ous DL models that are widely deployed in real applications, includ-
ing RetinaFace (RF) [8], YOLOv2 (YOLO) [23], VGG-16 (VGG) [25],
PoseNet (PN) [35] and Fast Style Transfer (FST) [5]. They consist of
various numbers of operators, ranging from 14 to 61. We execute
these models in float32. We run each experiment for 50 times and
obtain the averaged results.

Baselines. We compare CoDL with multiple baselines, partic-
ularly 1) 𝜇Layer-like. We follow the implementation proposed in
𝜇Layer [15]. We partition the workload using a FLOPs-based predic-
tor following the design in 𝜇Layer [14], and execute the partitioned
workload across CPU and GPU using the buffer type data; 2) the
inference framework using the single processor, i.e.,MACE. we exe-
cute the models solely on CPU or GPU with the processor-friendly
data type, i.e., image type and buffer type for Adreno GPU and Mali
GPU, respectively. All CPUs use buffer type; 3) we also calculate the
theoretical performance upper bound of the co-execution system.
We exclude the data sharing overhead, and to each operator we
always apply the optimal partitioning ratio, which is calculated
from the offline profiling.
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Figure 17: Distribution of partitioning dimension on each
operator of selected models.

7.2 Overall performance
First we present the overall performance of CoDL on Snapdragon
platforms. Unless otherwise stated, CoDL uses the image type on
Snapdragon platforms. Fig. 15 illustrates the results.

Compared to 𝜇Layer-like, CoDL accelerates the inference by
3.43× on average, and up to 4.93× speedup is achieved on the
tested platforms. The main contributions to such improvement are
1) CoDL exploits hardware-friendly data type on CPU and GPU
to make full utilization of the processors; 2) CoDL leverages the
hybrid-dimension and the operator chain to reduce the data sharing
overhead; 3) CoDL uses the accurate latency predictor to balance
workload partitioning.

Compared to the inference on CPU and GPU with MACE, CoDL
achieves 2.08× and 1.56× speedup on average, respectively. The
acceleration is due to the co-execution of each operator. Compared
to CoDL (buffer based), CoDL achieves 3.64× speedup on average
because it uses the efficient data type.

What’s more, CoDL approaches the theoretical performance
upper bound, because CoDL successfully reduce the data sharing
overhead and applies the optimal partitioning ratio by the accurate
latency predictor. For instance, on the fast style transfer model,
CoDL reduces the latency by 73% while the co-execution approach
theoretically can reduce by 77% on tested platforms, compared to
the inference on CPU with MACE.

We also evaluate the performance of CoDL on the Kirin 990
platform, which is equipped with a Mali GPU [9]. The Mali GPU has
the L1 cache, making it more efficient to access the buffer type data.
Thus, CoDL makes use of the buffer type on both CPU and GPU for
the Kirin platform. Fig. 16 demonstrates the inference latency of
the selected models. Compared to 𝜇Layer-like, CoDL achieves up to
1.67× and on-average 1.49× speedup on Kirin, because it 1) reduces
the overhead of data mapping and synchronization, 2) best balances
workload partitioning via the accurate predictor.
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Figure 18: Inference latency with and without hybrid-
partitioning dimension.
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Figure 19: Generated operator chains on the selectedmodels.
The operators with same color are in the same chain.

Compared to the inference on CPU and GPU with MACE, CoDL
also can accelerate the inference by 2.43× and 1.41× on Kirin, re-
spectively. Compared to CoDL (image based), CoDL achieves 2.66×
speedup on average due to the hardware-friendly data type.

7.3 Performance of the hybrid-dimension
partitioning

Next we breakdown the system and discuss the performance of each
key component, beginning with the hybrid-dimension partitioning.
We use the Snapdragon 855 as the platform. We do not apply the
operator chain.

We first show the distribution of the partitioning dimension de-
termined by CoDL on the selected models. Shown in Fig. 17, CoDL
selects the partitioning dimension by taking account of the redun-
dant concurrency and computing overhead. For the selected models,
CoDL determines that 77% and 23% operators are partitioned on 𝐻

and 𝑂𝐶 dimensions, respectively. We also notice that 𝐻 dimension
is more likely picked for the up layers, while for the bottom layers
we trend to use 𝑂𝐶 dimension to partition. It is because common
models usually have large feature maps on the up layers, where
partitioning on 𝐻 is more efficient to avoid the redundant data
sharing between CPU and GPU.

Fig. 18 illustrates the inference latency with and without the
proposed hybrid-dimension partitioning on Snapdragon 855. As
the baselines, we use the unified partitioning dimension, i.e., 𝐻
or 𝑂𝐶 . We use the proposed latency predictor to set the optimal
partitioning dimension. As shown in Fig. 18, the hybrid-dimension
brings 1.2× speedup on average, compared to the unified partition-
ing on 𝐻 and 𝑂𝐶 , respectively. For the large models, e.g., the fast
style transfer, the speedup is much more significant, up to 1.51×,
reducing the inference latency from 560ms and 457ms to 384ms
according to our evaluation.

7.4 Performance of the operator chain
Next we evaluate the performance of operator chain. Fig. 19 demon-
strates the generated operator chains on the selected models. For
instance, on RetinaFace, CoDL successfully organizes operators

Table 3: ±10% accuracy and model size of the latency predic-
tors.

Predictor Device ±10% Accuracy Model Size

FLOPs-based
Xiaomi 9 10.46%

8BRedmi K30 6.99%
Xiaomi 11 9.40%

nn-Meter - ∼90% ∼800MB

Ours
Xiaomi 9 84.03%

500BRedmi K30 85.17%
Xiaomi 11 82.96%

Table 4:±10% prediction accuracy on typical convolution im-
plementations.

Device CPU-Direct GPU-Direct GEMM Winograd

Xiaomi 9 77.77% 84.64% 91.14% 93.27%
Redmi K30 94.80% 78.39% 90.06% 93.72%
Xiaomi 11 84.56% 80.37% 85.71% 87.10%
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Figure 20: Data sharing overhead with and without the op-
erator chain.

together as chains, the length of top three longest chains are 21 (op
0-20), 18 (op 22-39), 12 (op 40-51). On the selected models, more
than 72% of operators on average can be chained together, which
significantly reduce the data sharing overhead.

Fig. 20 illustrates the data sharing overhead with and without the
operator chain. Due to the reduced redundant data transformation
and data sharing times, CoDL with the operator chain reduces the
overhead by 55% on average for the selected models. For instance,
on RetinaFace, the overhead reduction is up to 45%, from 118ms to
65ms.

7.5 Performance of the latency predictor
In this subsection, we discuss the performance of the latency pre-
dictor proposed in CoDL. Table 3 shows the details. We take the
FLOPs-based predictor as the baseline, which is used in the SOTA
co-execution system [15]. The FLOPs-based predictor considers
the number of FLOP of the model, and build a simple linear model
to predict the latency. As shown, the FLOPs-based predictor only
achieves 8.95% accuracy on average on the tested platforms. By
considering the non-linear features and concurrency overhead, our
latency predictor achieves 84.03%, 85.17% and 82.96% accuracy on-
average for the tested platforms, respectively. The accurate latency
prediction leads to the balance workload partitioning between CPU
and GPU, which in turn speedups the inference.
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(b) Energy consumption per inference

Figure 21: Power and energy consumption of CoDL and base-
lines on Snapdragon 855.
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Figure 22:Memory usage ofCoDL andMACEon Snapdragon
855.

What’s more, the achieved accuracy is even comparable to the
black-box latency prediction model e.g., nn-meter (∼ 90%) [33]. By
understanding the hardware characteristics, we design the small
but effective predictor, specially for mobile SoCs. The model size
of our predictor is only about 500 bytes, while nn-meter’s size is
nearly 800 MB which is not suitable for the online prediction on
mobile devices.

We also evaluate the prediction accuracy on typical DL kernels
i.e., convolution implemented via Direct, GEMM and Winograd
with different devices. Detailed in Table 4, our latency predictor ob-
tains up to 94.8% accuracy. On Winograd and GEMM, the averaged
accuracy achieved is about 91.36% and 88.97%, respectively.

In addition, the proposed predictor is very light-weight. It only
costs 0.2-0.5ms for each prediction. To the predictor, we collect
around 6,000 samples. This one-time effort costs around 1.5 hours
on the target devices. The training process takes about 1-2 seconds
according to our evaluation.

7.6 System overhead
Next we evaluate the system overhead of CoDL, in terms of the
power, energy consumption and memory usage.

Fig. 21 illustrates the power and energy consumption of CoDL as
well as the baselines on Snapdragon 855. Since CoDL exploit the co-
execution of CPU and GPU. the averaged power of CoDL increases
by 28.9% and 129.5%, compared to the inference with CPU and GPU
on MACE, respectively. CoDL makes use of the friendly data type
for CPU and GPU, leading to a higher hardware utilization, thus the

power consumption increases by 22.2%, compared to 𝜇Layer-like
which uses the unified data type, as shown in Fig. 21a.

Although the consumed power is higher, the energy consump-
tion of CoDL might get even lower than baselines thanks to the
significant inference speedup achieved by CoDL. Fig 21b shows
the averaged energy consumption per inference of CoDL as well
as baselines on the selected models. Compared to the inference
with CPU on MACE, we reduce the energy consumption by nearly
38.7%. CoDL can also save 62.3% more energy cost on average than
𝜇Layer-like. But compared to the GPU on MACE, CoDL increase
the energy consumption by 52.0%.

Fig. 22 demonstrates the memory usage of CoDL on Snapdragon
855. To support the co-execution, CoDL allocates extra memory. As
shown, CoDL consumes about 25.97% more memory than MACE,
on the selected models. For instance, when executing VGG, CoDL
uses about 909.02 MB memory in total, while MACE takes about
645.55 MB memory.

8 DISCUSSION
Generality of CoDL. CoDL is a software optimization solution to
address the efficiency issue caused by the unawareness of platform
features and data sharing overhead to enable efficient concurrent
run of on-device CPU and GPU. Although we implement the CoDL
on MACE, the idea of concurrency-aware latency prediction and
hybrid data sharing between CPU and GPU can be readily applied
to other mobile deep learning frameworks, such as TensorFlow
Lite [18] and MNN [20]. CoDL can adaptively select the processor-
friendly data type for various GPUs by profiling commonly used
operators. CoDL also works for on-demand scenarios. If all oper-
ators in a new DL model are supported, CoDL performs online
prediction and partitioning in a prompt way because the predictor
in CoDL is very light-weight with low latency of online partition-
ing (< 1 sec). However, if there are some unsupported operators
in the new model, CoDL requires extensive latency profiling and
modeling that takes more time.

Limitation and futurework. There are mainly two limitations
for CoDL. First, due to the concurrent run of CPU and GPU, CoDL
consumes more power than single processor solution. We plan to
extend the predictor to model the power consumption behavior
of CPU and GPU on DNN model inference, such that CoDL can
strike the balance between energy consumption and latency. Sec-
ond, CoDL hardly achieves speedup for lightweight DL models
such as MobileNet [24], since the data sharing overhead caused by
partitioning easily dominates the gain brought by the concurrent
run of CPU and GPU for small operators.

For the future work, to adapt to more dynamic workloads, we
plan to extend the predictor to adjust the predicted latency accord-
ing to the CPU and GPU utilization. Such that the partition plan
can be more flexible. This is however not a simple issue due to the
complex resource scheduling and competition in the background.
For the real-time workload such as the models leveraging early
termination, we could record the termination probability for each
termination point in the model. After executing models for many
times, the termination probability at each point converges. Then
CoDL can make a partitioning plan according to the termination
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probability at each point, such that partitioned execution is more
efficient on-average.

Extended discussion. This work indicates that the specific de-
sign of the mobile SoC, i.e., the sharing memory of CPU and GPU,
is the root cause that the concurrent run of CPU and GPU can ac-
celerate the DL model inference. However, it involves data sharing
overhead including the data transforming and synchronization. To
address this issue, a dedicated hardware-based data transformer
can be quite helpful to decrease the data transforming overhead.
Furthermore, a better implementation of OpenCL can decrease the
synchronization overhead.

9 RELATEDWORK
Co-execution of heterogeneous processors. Some existingworks
explore to concurrently utilize the on-device CPU and GPU to tune
the DL performance on mobile devices [13, 15, 16, 29]. OPTiC [29]
tunes the workload partitioning and core frequencies of CPU and
GPU, to keep it within the thermal constraint. 𝜇layer [15] uses
both CPU and GPU to accelerate the DL inference by data quanti-
zation and workload partitioning. However compared to CoDL, it
overlooks the real performance issues in the co-execution such as
the data sharing overhead and non-linear latency response caused
by hardware characteristics. By taking these factors into account,
CoDL successfully reduces the data sharing overhead and best
balance the workload partitioning. Furthermore, CoDL helps to
decrease the latency for each DL model inference, while it cannot
be achieved by the pipeline co-execution.

Performance prediction for DL inference. Existing works
design latency prediction models to find efficient model architec-
ture [6, 7, 10, 15, 22, 32, 33]. Cai et. al [6] propose a polynomial
regression model with the configuration parameters of models as
features, but it cannot capture the impacts of underlying platform
features, which can be dominant in practice. nn-Meter [33] consid-
ers the fusion of multiple operators in runtime, and uses black-box
random forest model to predict the latency. Different from the ex-
isting works, the predictor in CoDL considers the latency pattern
caused by the characteristics of the processors, and the concurrency-
specific overhead, which makes the predictor significantly more
light-weight and accurate.

Acceleration of DL inference on mobile devices. Numer-
ous works make efforts to better utilize the on-device processors to
speedup DL inference, e.g., CPU [28, 30] and GPU [11, 12]. Pipe-It
[30] pipelines the consecutive inferences, and split the convolution
operator onto the big.LITTLE CPU cores to achieve higher through-
put. Asymo [28] partitions workload according to the computing
power of the big and little CPU cores, thus improve the schedul-
ing fairness between the asymmetric CPUs. DeepMon [11] caches
the convolution results between consecutive frames to reduce the
inference latency on video streams. Jiang et. al [12] heuristically
determine the optimal work group size to improve the utilization
of mobile GPUs. The design of CoDL is orthogonal to these works,
they can be incorporated with CoDL to further accelerate the infer-
ence. DeepThings [34] proposes a fused tile partitioning method
which also leverages the idea of operator chain to partition opera-
tors of DL models. Different from this work, on one hand, CoDL

proposes hybrid-dimension partitioning that considers partition-
ing alone not only 𝐻 but also 𝑂𝐶 dimension to achieve the best
co-execution efficiency. On the other hand, CoDL considers the
data sharing overhead and the trade-off between the data sharing
overhead and computing overhead, which is non-trivial for the
co-execution efficiency of operator chains.

10 CONCLUSION
In this paper, we propose CoDL, a CPU-GPU co-execution frame-
work for efficient DL inference. CoDL intelligently balances the
overhead of data sharing and computation by adaptively partition-
ing the operators from hybrid-dimensions, and chaining operators
up to reduce the data sharing times. Furthermore, CoDL fairly
distributes the workload onto the heterogeneous processors by
designing a light-weight but accurate latency predictor, that consid-
ers the overhead of co-execution and non-linear platform features.
We evaluate CoDL on dominated hardware platforms and the re-
sults show that CoDL achieve 3.43× speedup on average, and 62.3%
energy saving, compared with the SOTA co-execution system.
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