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Abstract
We propose V-Droid, a mobile GUI task automation agent. Unlike
previous mobile agents that utilize Large Language Models (LLMs)
as generators to directly generate actions at each step, V-Droid
employs LLMs as verifiers to evaluate candidate actions before
making final decisions. To realize this novel paradigm, we introduce
a comprehensive framework for constructing verifier-driven mobile
agents: the discretized action space construction coupled with the
prefilling-only workflow to accelerate the verification process, the
pair-wise progress preference training to significantly enhance the
verifier’s decision-making capabilities, and the scalable human-
agent joint annotation scheme to efficiently collect the necessary
data at scale.

V-Droid obtains a substantial task success rate across several
public mobile task automation benchmarks: 59.5% on Android-
World, 38.3% on AndroidLab, and 49% on MobileAgentBench, sur-
passing existing agents by 5.2%, 2.1%, and 9%, respectively. Further-
more, V-Droid achieves a remarkably low latency of 4.3s per step,
which is 6.1× faster compared with existing mobile agents.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Artificial intelligence.
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Figure 1: Task success rate and latency per step of currentmo-
bile agents 1and V-Droid evaluated on AndroidWorld bench-
mark. The latency of 2B, 7B and 8B agents are measured on
2×Nvidia 4090. For 72B orMoE agents, the latency ismeasure
on 4× Nvidia A100 80G.

Computing and Networking (ACM MobiCom ’26), October 26-30, 2026, Austin,
Texas, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 Introduction
Controlling mobile devices via natural language has been a long-
standing aspiration in the mobile domain [11, 23, 31, 32], promising
opportunities to automate repetitive tasks and elevate user conve-
nience. Unlike API-based agents that rely on predefined function
calls [4, 12], mobile GUI agents simulate human interactions, allow-
ing them to operate across diverse applications through Graphical
User Interface (GUI). However, developing such an agent poses
significant challenges: it needs to not only interpret on-screen con-
tent but also make reasonable decisions to execute multi-step tasks
within dynamic and complex GUI environments.

1The task success rate achieved by GPT-4 and 4o, Claude, Llama, Gemini and Qwen
is measured with the default prompt templates i.e., T3A and M3A, in AndroidWorld
benchmark.
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In recent years, a variety of LLM-powered mobile GUI agents
have been proposed [1, 7, 9, 18, 28, 29, 31, 35, 39]. These agents typi-
cally utilize LLMs as generators, generating decisions (e.g., reasoning
and actions) based on the current task states (e.g., user interfaces,
task descriptions), leveraging the contextual understanding and rea-
soning abilities inherent to LLMs. These agents, however, fall short
of meeting practical deployments. Fig.1 presents the performance of
state-of-the-art (SOTA) mobile agents in terms of task success rate
(SR) and stepwise latency on the AndroidWorld [20]. As shown, the
highest SR achieved by existing agents is only 54.3%, significantly
lower than the human performance of 80%. Additionally, latency
remains a critical challenge. Agent-S2 [1], powered by GPT-4o and
UI-TARS-72B [18], takes over 25 seconds for a single step.

The suboptimal SR is predominantly hindered by the limited
decision-making capabilities of existing agents when performing
mobile tasks. While techniques such as prompt engineering [30, 31]
and GUI fine-tuning [7, 18, 35] are commonly employed, these
methods primarily focus on enhancing general performance of
LLM, such as instruction-following, or refining agents’ adaptability
to mobile interfaces. However, they fail to adequately address task-
specific, multi-step decision-making challenges, particularly in the
context of mobile GUI control.

The high latency of existing mobile agents primarily stems from
the autoregressive decoding mechanism of LLMs. These agents
generate multiple tokens sequentially for each decision at every
step. For instance, SeeAct [39] generates around 100 tokens per step
for one decision. Moreover, techniques like Chain-of-Thought (CoT)
[30] and ReAct [36] are widely employed to enhance reasoning and
mitigate hallucination, further increasing output length, worsening
latency issues.

The fundamental research problem in developing practical mo-
bile agents lies in enhancing their decision-making capabilities for
mobile tasks while simultaneously maintain reasonable latency. To
achieve this goal, we introduce V-Droid, which, as illustrated in
Fig. 1, achieves a marked improvement in task success rate, refresh-
ing the record to 59.5% on the AndroidWorld benchmark, while
achieves 6.1× speed up on the step-wise latency.

The key idea behind V-Droid is transforming the paradigm of
mobile agents by using LLM as verifiers instead of generators, which
is illustrated in Fig. 2: rather than directly generating the final
decision, when LLMs are used as verifiers, potential actions are
first extracted. The verifier-driven agents then explicitly evaluate
each candidate action e.g., by prompting, "Is action X helpful for
completing the task?" Following these evaluations, the agent selects
the action with the highest value, e.g., the likelihood of generating
a ’Yes’ token.

Essentially, the verifier-driven architecture decouples one action
decision-making process into two discrete processes: action ex-
traction and action verification. This decoupling offers substantial
advantages for advancing mobile agents: (i) Intuitively, verifying an
answer is much easier than generating one from scratch, a phenom-
enon known as the generation-verification gap [15, 24]. Instead
of directly making decisions within an expansive and infinite ac-
tion space, the verifier-driven agent evaluates actions within an
extractable and enumerable space, thereby simplifying the decision-
making process. More importantly, for mobile devices, the inter-
active UI elements is rather limited (see § 2.2) at each task step.

Is the action correct (Yes/No)?

LLM as Generator LLM as Verifier

Reason: To send msg
to Alice, I should use...
Action: Click (x, y)

Action
Extraction

Action Space

Button A
Button B

Textbox C
Textbox D

Figure 2: The key differences in agent architecture between
using LLMs as generators and as verifiers for decision-
making: rather than directly determine actions based on
states, verifier-driven agents explicitly evaluate each action
before arriving at the decision.

(ii) The verification process typically requires generating fewer to-
kens, such as simple outputs like "Yes" or "No", which dramatically
reduces latency. Moreover, actions to be verified can be processed
in batches, fully leveraging hardware parallelism and further im-
proving efficiency.

However, to fully unleash the potential of verifier-driven mobile
agents, several technical challenges must be addressed: (i) Effec-
tively extracting action from UI and constructing clean and com-
plete action space, while efficiently verifying multiple available
actions at each task execution step. (ii) Designing effective training
methods for the verifier to improve decision-making capabilities,
particularly since directly utilizing pre-trained LLMs as verifiers is
inadequate as detailed in § 2.2. (iii) Collecting and organizing the
necessary data to support the training process at scale.

To address these challenges, V-Droid introduces holistic designs
for building a verifier-driven mobile agent, including:

Verifier-driven agent workflow. At each task step, the work-
flow of V-Droid encompasses three main stages: extracting the
action space, scoring with the verifier, and executing the selected
action. First, we introduce a lightweight action extractor capable of
accurately constructing and augmenting the action space for subse-
quent verification based on GUI representations, e.g., the Android
Accessibility Tree [2]. Next, available actions are verified using a
prefilling-only approach, thus eliminating the constraints on LLM
decoding. Moreover, multiple actions are verified in batches, lever-
aging prefix caching to significantly reduce latency. Finally, the
action with the highest estimated score is executed.

Pair-wise process preference (𝑃3) training method. To im-
prove the decision-making capabilities of V-Droid, we introduce a
pair-wise preference training strategy tailored for verifiers. Unlike
prior post-training approaches that rely solely on mobile GUI data,
our training leverages labeled mobile task trajectories with fine-
grained process supervision [15]. It enables the verifier to prioritize
correct actions by assigning them higher scores while penalizing
incorrect actions at each task step. This approach significantly en-
hances the task-specific decision-making proficiency of V-Droid.

Scalable human-agent joint annotation scheme. To collect
the required fine-grained task trajectories, which is absent in exist-
ing datasets, we propose a human-agent joint annotation scheme
based on the observation: when V-Droid verifies a group of ac-
tions at each task step, the entropy of the assigned scores strongly
correlates with step-wise correctness. Thus, we utilize a trained
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verifier to produce initial annotations, limiting human involve-
ment to correcting only the erroneous annotations identified by
the agent. Moreover, the annotation and training process is con-
ducted iteratively, allowing the agent to be progressively trained on
increasingly larger datasets, thereby effectively minimizing human
labeling efforts while scaling the training process.

The verifier in V-Droid, which uses the small language model
(SLM), Llama-3.1-8B, as the backbone, is trained using the 𝑃3 method
across four iterative training rounds with 110K samples collabo-
ratively annotated by humans and agents. We evaluate V-Droid
on three public, realistic task benchmarks: AndroidWorld [20], An-
droidLab [34], and the MobileAgentBench [26]. On these bench-
marks, V-Droid refreshes the task success rates to 59.5%, 38.3%,
and 49%, surpassing previous best-performing agents by absolute
margins of 5.2%, 2.1%, and 9.0%, respectively. Compared to other
SLM-based agents, V-Droid achieves significant SR improvements
of 50%, 22%, and 15% on these benchmarks. In addition, V-Droid
delivers a 6.1× speedup over prior SOTA mobile agents.

In summary, we make the following contributions:
• We introduce V-Droid, the first verifier-driven mobile agent
framework, accompanied by comprehensive design princi-
ples.

• Wepropose the pair-wise process preference trainingmethod,
demonstrating its effectiveness in enhancing the decision-
making capabilities for mobile GUI task.

• We develop a human-agent joint annotation approach, en-
abling scalable training of mobile agents.

• V-Droid significantly outperforms previous SOTA in task
success rates on multiple public benchmarks while reducing
latency by 6.1×.

2 Related Work and Motivation
2.1 LLM Powered Mobile GUI Agent
Recently, the emergence of numerous LLM-poweredmobile agents [5,
14, 14, 25, 27, 31] has been observed. The introduction of large
language models (LLMs) has significantly improved the ability of
mobile agents to comprehend context and generate effective ac-
tions. Existing agents typically employ the following strategies to
enhance performance.

Most mobile agents [5, 14, 14, 25, 27, 31, 39] leverage prompt
engineering techniques to optimize task execution. For instance,
SeeAct [39] employs a ReAct-style [36] prompt to break down
tasks into manageable steps, thereby reducing errors and mitigat-
ing hallucinations in the LLM’s outputs. Additionally, agents like
AutoDroid [31] and MobileGPT [11] collect task completion traces
during offline preprocessing stages for specific applications. These
traces are integrated with the memory of pre-trained LLMs, en-
abling enhanced performance tailored to particular applications.

Several recent works, such as UGround [7], Aria-UI [35], UI-
TARS [18], and Ferret-UI [37], propose training grounding models
that leverage pre-trained LLMs to comprehensively interpret and
interact with the UI. These approaches exploit the inherent rea-
soning capabilities of LLMs for mobile tasks. However, despite
the rapid advances in LLMs driven by large-scale pre-training, the
lack of training corpora specifically tailored to mobile GUI tasks
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Figure 3: The distribution of interactive UI elements within
each UI page by analyzing around 25, 000 real-world UI
screens from the public dataset [13].

leaves existing models insufficiently prepared for reliable mobile
task automation, as demonstrated in Fig. 1.

In addition to utilizing pre-trained LLMs for mobile agents, re-
searchers have explored GUI fine-tuning strategies to improve
task execution [16, 19]. This involves adapting a pre-trained lan-
guage model using domain-specific data, such as annotated screen-
shots and GUI representations. While GUI fine-tuning enhances
the model’s ability to accurately interpret and interact with GUI
elements [6, 38], it remains insufficient for facilitating task-specific
reasoning and multi-step decision-making, especially in dynamic
and complex GUI environments, as evidenced in Fig. 1.

Apart from the accuracy, few existing studies address latency
optimization for mobile agents. MobileGPT [11] attempts to cache
execution traces for tasks successfully completed. However, this
approach lacks scalability due to the diverse range of tasks and
applications. As illustrated in Fig. 1, most existing agents require
more than 10 seconds per step, highlighting significant inefficiencies
in task execution.

The fundamental challenges of improving decision-making capa-
bilities while reducing decision-making latency for mobile agents
remain unresolved.

2.2 Opportunity and Challenges
We tackle this challenge by proposing a novel approach: using LLMs
as verifiers instead of generators for mobile agents.

Fig. 2 illustrates the key difference in agent architecture between
using LLMs as generators and using LLMs as verifiers. The fea-
sibility of verifier-driven agents depends on the presence of an
enumerable and extractable action space. In the context of GUI au-
tomation tasks on mobile devices, this prerequisite is entirely met.
Owing to the constrained screen size and the inherent interaction
patterns of touchscreen interfaces, both the types of actions and
the number of interactive UI elements on a single page are limited.

Fig.3 illustrates the distribution of interactive UI elements within
each GUI state. As depicted, the interactive action space on mobile
devices is generally constrained to approximately 20 elements on
average. Although we have a unique opportunity to build verifier-
driven agents for mobile tasks, several technical challenges are not
well addressed.
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Figure 4: The Workflow of V-Droid: ① Extracting actions
from UI and supplementing default actions; ② Constructing
verification prompts with the template for candidate actions;
③ Scoring with the verifier in batch with prefix caching; ④

Completing and executing the selected action; ⑤ Updating
the working memory.

Firstly, the detailed architecture and workflow of the verifier-
driven agent remain ambiguous. In particular, constructing a well-
defined action space is a nontrivial challenge. The supported action
type varies on different UI elements and certain useful actions may
not be explicitly visible, e.g., navigate home. Furthermore, some
actions are inherently continuous rather than discrete, e.g., type
text. Beyond that, efficiently verifying a set of actions also poses
difficulties, especially considering the best utilizing the hardware
parallelism.

Secondly, directly utilizing a pre-trained LLM as the verifier is
not a feasible solution for mobile agents. For instance, Llama-3.1-8B,
fail to complete any tasks within the benchmark (detailed in § 6.4).
Even powerful LLMs, i.e., GPT-4 as the verifier, achieve only 34.5%
task success rate on the AndroidWorld benchmark. The challenge
of effectively fine-tuning such a verifier remains unresolved.

Thirdly, the data necessary to enable effective training, partic-
ularly fine-grained labeled task trajectories, is, to the best of our
knowledge, absent in publicly available datasets. The collection and
annotation of such data at scale present a significant challenge, pos-
ing a critical obstacle in the development of verifier-driven agents.

To this end, in V-Droid, we introduce a comprehensive frame-
work that integrates holistic designs to develop verifier-driven mo-
bile agents, encompassing the agent architecture, training method-
ologies, and data collection strategies. In the following, we present
these components in detail, starting with the workflow of V-Droid.

3 Workflow of V-Droid
Fig. 4 illustrates the workflow of V-Droid. As a verifier-driven
agent, V-Droid requires the enumeration of candidate actions prior
to estimating the optimal action at each step. To achieve this, V-
Droid employs a rule-based action candidate extractor to obtain
actions from the current UI state. Each action candidate is then
encapsulated using a predefined prompt template. Following this,
the fine-tuned LLM as the verifier is utilized to evaluate and assign

scores to these candidates in batch. The action with the highest
score is selected and executed. In the following, we provide an
in-depth explanation of each module.

3.1 Constructing Action Space
A task 𝜅 is automated through a sequence of steps. At any given
step 𝑡 , we extract a set of actions A𝜅 (𝑡), representing the potential
interactions available within the UI state S𝜅 (𝑡) associated with
the current step 𝑡 , collectively defining the action space. This ac-
tion space generally comprises two categories: UI-dependent and
-independent actions, the latter being default actions that are not
explicitly visible.

The UI-dependent action space is defined by the basic action
types and the interactive UI elements available in the current UI.
Owing to the inherent nature of touchscreen interactions on mobile
devices, the set of basic action types is relatively limited. Specifically,
we identify the following basic actions: click, long-press, scroll, type
text, and clear text.

To identify interactive UI elements, the XML representation of
the UI state S𝜅 (𝑡) is directly analyzed, extracted using the Android
Accessibility Service [2]. A rule-based extractor is applied to de-
tect UI elements, such as button, checkbox, and textbox, that are
clickable, long-clickable, scrollable, or editable. These identified el-
ements are then mapped to their corresponding basic action types.
For example, and editable text box 𝛽 would be mapped to the ac-
tion ‘input {content} to 𝛽’. To prevent a combinatorial explosion of
candidates, the standard on-screen keyboard is disabled, and text
input is instead performed directly via Android commands [3].

In addition to the UI-dependent actions, there exist actions that
are not visible in the current UI but are essential for device control
and task completion. Specifically, we supplement every action space
A𝜅 (𝑡) with the following default actions: open apps, wait, navigate
home, navigate back, complete task, and answer users’ question.

The analysis presented in § 7 demonstrates that the rule-based
extraction employed by V-Droid effectively encompasses the ma-
jority of interactions observed in real-world mobile tasks, thereby
ensuring comprehensive practical coverage without unnecessarily
complicating the action space.

3.2 Scoring with Verifier
Once the action space A𝜅 (𝑡) is determined, each action 𝛼 ∈ A𝜅 (𝑡)
is formatted into a predefined prompt template 𝑃 to construct
the corresponding verification prompt 𝜌𝑡𝜅 (𝛼). The structure of the
prompt template is illustrated in Fig. 4 and includes the following
key components of descriptions: role, goal, working memory, UI
state, instruction, and the specific question to be verified.

In the role component, we outline the guidelines for operating
mobile devices, as in [20]. The goal component specifies the task to
be automated. The working memory maintains a record of action
histories and trajectories for the current task, and it is updated after
the execution of each action. For the UI component, we provide a
streamlined description of the UI in XML format, as in [31]. The
instruction component delivers explicit directives for the generative
verifier, specifying that it must respond strictly with ’Yes’ or ’No’.
Finally, the prompt concludes with the specific question: Is the
action 𝛼 helpful for completing the given user task?

4
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Subsequently, all the formatted verification prompts, each corre-
sponding to an action candidate 𝛼 within the action space A𝜅 (𝑡),
are fed in batch to the verifier V . The verifier is fine-tuned from a
pre-trained LLM, i.e., Llama-3.1-8B. The fine-tuning process enables
the verifier to assign a score to each action by analyzing only the
first generated token, e.g., the possibility of ’Yes’ or ’No’. Ideally,
this score reflects the likelihood of successfully completing the task
if the corresponding action were executed at the current step 𝑡 . The
training details of the verifier are elaborated in Section 4.

Finally, after evaluating action candidates, the action 𝛼
𝑦
𝜅 (𝑡) as-

signed the highest score is selected for execution at 𝑡 :

𝛼
𝑦
𝜅 (𝑡) = argmaxV(𝜌𝑡𝜅 (𝛼)), 𝛼 ∈ A𝜅 (𝑡) (1)

3.3 Accelerating Verifications
Assigning scores to a single action requires only one token gener-
ated by the generative verifier, such the pre-filling-only architecture
significantly enhances the efficiency of mobile agents. When verify-
ing a set of actions at each step, all verifications can be processed in
parallel as a batch. Moreover, it is observed in Fig. 4 that, at a given
task step, nearly all components of the verification prompts, apart
from the question, remain identical. This design aims to maximize
the shared prefix in the prompt, which can be leveraged to further
accelerate the inference process.

Prefix caching enables the reuse of key-value (KV) caches across
multiple verifications, thereby eliminating the need to recompute
costly intermediate results. We adopt the Automatic Prefix Caching
(APC) in vLLM [10]. Building on prefix caching, we further group
actions to optimize the verification process. Specifically, within
each batch of actions, we first perform a warm-up verification.
Subsequently, actions of the same type are grouped together for
verification. Since verifications of identical action types share a
greater portion of their prompt content, this approach increases
cache utilization and further reduces latency.

3.4 Completing and Executing Action
Before the selected action is exactly executed, three specific types
of actions, open app, type text, and answer, require additional com-
pletion to specify the target app to open, the content to type, and
the response to the user’s query. Thus we employ an LLM to gener-
ate the necessary content by prompting the current UI state and
working memory.

Action completion introduces extra overhead to the prefill-only
agent architecture in V-Droid. But the number of actions requir-
ing completion is relatively small. From the measurement on real
world 2, 000 tasks in [13], only 12.4% actions required completion.
Furthermore, the separation of action selection and completion in
V-Droid significantly simplifies the action space, enhancing the
overall efficiency.

The selected and completed actions are executed by simulating
interactions such as clicking, long-clicking, scrolling, and other
corresponding operations. This execution results in a new UI state,
S(𝑡+1). Following the reflection framework proposed in [22], a step-
level summary is generated by recording the executed action. The
working memory is then updated with this summary. Subsequently,
V-Droid iteratively performs the extracting actions, scoring with
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Figure 5: Illustration of 𝑃3 training used in V-Droid.

the verifier, and executing workflow until the agent signals task
completion by reporting the complete task action.

4 Pairwise Process Preference Training
The generative verifier in V-Droid, which assigns a score to each
action, enables the agent to discern which actions are more likely
to contribute effectively to completing the given task. A straight-
forward approach involves directly employing a pre-trained LLM
as the verifier without any post-training, using the logits or the
probability of the ’Yes’ token from the output space as the verifica-
tion score. However, our measurements (§6.4) indicate that directly
leveraging the Llama-3.1-8B as the verifier results in a success rate
as low as 0% on AndroidWorld benchmark [20].

The rationale behind the suboptimal performance is twofold.
First, for the verifier without post-training, we observe that the
scores derived from the token space are insufficiently distinguish-
able, particularly in scenarios with numerous action candidates.
Furthermore, simple fine-tuning on GUI data fails to enhance this
indistinguishability. For instance, Qwen2.5-VL-72B [19] fine-tuned
with Android GUI data [21] achieves only 35% success rate. There-
fore, we believe that, to bridge the gap between the generated token
space and the desired scoring (reward) space, additional training
is necessary. More importantly, this training must be task-specific
rather than relying solely on domain adaptation with GUI data, as
the decision-making capabilities of mobile agent cannot be effec-
tively enhanced otherwise. We propose the Pairwise Process Pref-
erence (𝑃3) training to significantly enhance the decision-making
capabilities of verifier-driven mobile agents.

4.1 Decision-Making Training
The objective of 𝑃3 training is to maximize the distinction between
the action to be selected and the actions to be not selected at each
step, guided by the process supervision [15]. To achieve this, train-
ing samples are structured into positive-negative action pairs at
each step. By utilizing these contrastive pairs, 𝑃3 training empowers
the verifier to learn to assign higher scores to positive actions and
lower scores to negative ones within the given context. Next, we
delve into the training details, starting with the format of training
data.

Training data format. Fig. 5 illustrates the process of organiz-
ing the training data. For a given task 𝜅, 𝑃3 training necessitates
fine-grained process labels, i.e., the trace for completing task 𝜅

with the labeled correct action at each step. Specifically, the action
5
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spaceA𝜅 (𝑡) is derived from at each step 𝑡 , as described in Section 3.
Within the action spaceA𝜅 (𝑡), the labeled action is identified as the
positive action 𝛼

𝑦
𝜅 (𝑡), while the remaining actions constitute the

set of negative samples A′
𝜅 (𝑡). Subsequently, contrastive training

pairs Γ(𝑡) are constructed for step 𝑡 as:

Γ𝜅 (𝑡) = {(𝜌𝑡𝜅 (𝛼
𝑦
𝜅 (𝑡)), 𝜌𝑡𝜅 (𝛼𝑛𝜅 (𝑡))) | 𝛼𝑛𝜅 (𝑡) ∈ A′

𝜅 (𝑡)}, (2)

where 𝜌𝑡𝜅 represents the prompts constructed at step 𝑡 using the
prompt template. These prompts incorporate the positive action
𝛼𝑡𝑠 and the negative action 𝛼𝑡𝑗 , respectively, along with the UI state
S𝜅 (𝑡), task description, working memory, and other contextual
information, as detailed in Section 3. Finally, we aggregate all the
training pairs generated at every step of task 𝜅 across all labeled
tasks to construct the complete training dataset.

It is worth noting that, to the best of our knowledge, no publicly
available dataset contains the required fine-grained process labels
with contrastive action pairs. Therefore, we propose a novel data
collection and synthesis approach, which will be detailed in §5.

Training loss design. The following loss is adopted to train the
generative verifier at each step in V-Droid:

𝐿𝜅 (𝑡) = −𝐸 (𝛼𝑦
𝜅 (𝑡 ),𝛼𝑛𝜅 (𝑡 ) ) [log𝜎 (𝜏 (𝛼

𝑦
𝜅 (𝑡)) − 𝜏 (𝛼𝑛𝜅 (𝑡)))], (3)

where 𝛼𝑛𝜅 (𝑡) ∈ A′
𝜅 (𝑡) and 𝜏 represents the assigned score for the

verified action. Specifically, in V-Droid, a trainable MLP layer is
appended to the LLM to project its output token probabilities into
the estimated score for each action.

𝜏 (𝛼) =𝑀𝐿𝑃 · V(𝜌𝛼 ). (4)

When the 𝑃3 loss 𝐿𝜅 (𝑡) at each step 𝑡 of task 𝜅 across all labeled
tasks is minimized during training, the verifier learns to maximize
the score assigned to the positive action while minimizing the score
assigned to the negative action.

In P3 training, we introduce three key concepts: pairwise, process,
and preference, all of which are crucial for effectively training the
verifier. Firstly, preference training offers greater discriminative
ability for the verifier to distinguish similar UI or actions which
can be otherwise misleading to mobile agents. Secondly, process
supervision provides fine-grained supervision signals, which are
inherently beneficial for improving the step-wise decision-making
ability of the verifier. Furthermore, compared to outcome-based
supervision [15], process supervision allows for the construction
of a larger number of training samples. For instance, from 100 task
traces, we can derive around 55K step-wise process labels. Thirdly,
pairwise training can be considered a form of data augmentation.
Without such augmentation, only one training sample might be
obtained for each task step. In contrast, pairwise training enables
the generation of 50× more training samples, which is especially
critical when the available training data is limited.

4.2 Self-Correcting Training
In 𝑃3 training, only the action pairs corresponding to the states on
the correct trace are utilized. This raises an intriguing question:
can we also harness the data from the states on incorrect traces, as
illustrated in Fig. 6.

Such data are valuable in enhancing the self-correcting capability
of mobile agents. Intuitively, when humans interact with devices,
it is possible to enter an erroneous state unrelated to the current
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Figure 6: Illustration of constructing self-correcting pairs
and the mapping relationship between executed action and
reverse action.

intent. Instead of abandoning the task and starting over, humans
often try to correct such mistakes, e.g., by clicking the navigate
back button. To the best of our knowledge, no existing mobile agent
possesses the self-correcting capability. But the action pairs derived
from these erroneous states present an opportunity for us to equip
V-Droid with self-correcting ability through 𝑃3 training.

Specifically, as illustrated in Fig. 6, given that the state S𝑡−1 at
step 𝑡 − 1 lies on the correct trace, the state S𝑡 can be reached by
executing the labeled correct action 𝛼

𝑦
𝜅 (𝑡 − 1). Conversely, execut-

ing any incorrect action 𝛼𝑛𝜅 (𝑡 − 1) ∈ A′
𝜅 (𝑡 − 1) would lead to an

erroneous state for the given task 𝜅, noted as S′ (𝑡).
On the erroneous state S′ (𝑡), none of the actions from the action

space may be applicable. Instead, a reverse action 𝛼𝑟𝜅 (𝑡) is introduced
as the correct action, e.g., pressing the navigate back button. Specif-
ically, the reverse action is derived based on the executed action at
the previous step 𝑡 − 1 through a predefined mapping relationship,
as illustrated in Fig. 6. For example, when V-Droid enters incorrect
content by executing the action type text, the corresponding reverse
action is to clear the previously input content.

Based on the identified reverse actions, we further construct the
contrastive training pairs on the erroneous states for self-correcting
training as follows:

Γ′𝜅 (𝑡) = {(𝜌𝑡𝜅 (𝛼𝑟𝜅 (𝑡)), 𝜌𝑡𝜅 (𝛼𝜅 (𝑡))) | 𝛼𝜅 (𝑡) ∈ A𝜅 (𝑡)}. (5)

The 𝛼𝑟𝜅 (𝑡) represents the derived reverse action,

𝛼𝑟𝜅 (𝑡) =M(𝛼𝑦
𝜅 (𝑡 − 1)), (6)

where M represents the mapping function shown in Fig. 6. Ulti-
mately, the self-correcting training pairs are combined with the
contrastive training pairs obtained in Section 4.1 to form the final
training set for V-Droid.

It is worth noting that the number of erroneous states exceeds
the number of correct states for a given task. We find training with
excessive self-correcting pairs would lead to collapsed performance
by continuing output the navigating back action. Therefore, we ran-
domly sample the erroneous states to construct the self-correcting
training pairs, which account for approximately 2.5% of the entire
training set.

5 Human-Agent-Joint-Annotation
𝑃3 training enhances the capabilities of mobile agents. However, to
the best of our knowledge, the necessary training data, particularly
fine-grained process labels that capture both correct and erroneous
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Figure 7: Illustration of human-agent joint annotation.

states, remains unavailable in public repositories. To this end, we
propose a novel data synthesis methodology, as illusrated in Fig. 7.
First, we collect task instructions for Android Apps from public
datasets [13, 21]. Additionally, we leverage LLMs to synthesize
additional task instructions based on the Apps’ descriptions avail-
able on the App Store, followed by meticulous manual verification.
Subsequently, we generate the training data by actually executing
the targeted tasks using the corresponding applications on our
cluster of Android emulators. Human and agents jointly annotate
the correct actions required at each step towards successful task
completion.

The key idea of the human-agent joint annotation is to leverage
the trained V-Droid to perform initial annotations, with human
involvement only to correcting incorrect annotations, as illustrated
in Fig. 7. Furthermore, we divide the annotation and training process
into multiple iterations, allowing the agent to be progressively
trained with larger datasets, thereby reducing its annotation errors
over time. This iterative approach enables us to constrain human
labeling efforts while effectively scaling the training process.

5.1 Verifier-As-Annotator
To facilitate effective agent-human collaborative annotation, the
critical challenge is determining when and at which specific step
the agent is likely to produce incorrect annotations, thereby neces-
sitating human intervention.

We observe that when our trained verifier evaluates a set of
actions at a given step, there exists a strong correlation between the
ambiguity of the score distribution and the step-wise correctness of
the agent. Intuitively, when the verifier assigns a single high score to
one action while assigning significantly lower scores to the others,
the action with the highest score is likely correct. However, if the
score distribution is inconsistent, with multiple actions receiving
similar scores, the decision at this step is more likely to be incorrect.

Particularly, we employ the entropy to measure the ambiguity
of the score distribution E at the step 𝑡 ,

E𝜅 (𝑡) = −
∑︁

𝜏 (𝛼𝜅 (𝑡)) log(𝜏 (𝛼𝜅 (𝑡))) |𝛼𝜅 (𝑡) ∈ A𝜅 (𝑡), (7)

The entropy E serves as an effective metric for assessing the
step-wise correctness of V-Droid. A conservative threshold is in-
troduced to filter out steps where the agent is likely to perform
incorrect actions. Table. 1 shows the prediction accuracy on the
newly collected out-of-domain data can be as high as 76%. In such
cases, a human annotator reviews the surrounding steps near 𝑡
and provides corrective actions as needed. The agent then resumes
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Figure 8: Statistics of the collected datasets for training.

Table 1: Truth table based on entropies of scores. The thresh-
old is set as the median value of the entropies.

Iterations Data TP TN FP FN Accuracy

Iter. 2 27k 0.11 0.40 0.39 0.10 0.51
Iter. 3 55k 0.42 0.34 0.08 0.16 0.76
Iter. 4 110k 0.40 0.31 0.10 0.19 0.71

execution using the supplied actions until the task is successfully
completed.

5.2 Iterative Annotation and Training
Leveraging human–agent joint annotation, we iteratively optimize
the verifier using 𝑃3 training and deploy it to collect new data on
out-of-domain tasks and apps over four rounds. To address the cold-
start problem in the first round, we manually labeled data without
agent assistance. Human annotators selected the correct actions
from the extracted action lists provided by V-Droid, requiring
approximately four minutes per task and about five hours in total to
collect the initial 9K data pairs. In subsequent rounds, the agent was
deployed to execute tasks and mark stepwise correctness, enabling
progressive dataset expansion from 9K to 27K, then to 55K, and
finally to 110K after four iterations. Human annotators primarily
corrected errors in the trajectories, which reduced the average
annotation time to around one minute per task. As shown in Fig. 8,
the collected dataset spans more than 90 applications across seven
common categories.

As data volume grows, the verifier demonstrates continuous
performance improvements in both decision-making capability and
annotation accuracy. Table 1 presents the truth table across different
iterations, comparing verifier predictions based on entropy with
step-wise ground truth. The true positive ratio increases from 0.11
to approximately 0.40, while annotation accuracy improves from
0.51 to over 0.70. These improvements indicate that as the verifier’s
scoring ability strengthens, the agent correctly annotates more
steps, further reducing human annotation effort and enhancing
training efficiency.

5.3 Training Details
In V-Droid, the generative verifier is built based on Llama-3.1-8B-
Instruct-4-bit with one MLP layer attached to project the token
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logits into the action scores. We use Q-LoRa training with rank 16.
The learning rate is set to 1e-4 with 10 warm-up steps and then
gradually reduced to 1e-6 until the end of the training. The training
epoch is set to 20 for the 4th iteration, which is larger than the usual
LoRa training epoch. The reason is that longer training enlarge
the score gap between the correct and rejected actions, which is
observed to be more robust during the test time. The 4th iteration
of training is conducted on around 110k data pairs for 90 hours on
16×Nvidia A100 40G GPUs.

6 Evaluation
In the section, we evaluate V-Droid to highlight 1) the performance
of V-Droid compared to SOTA mobile agents in terms of improved
task success rate and reduced latency; 2) the training scaling law
and the savings of annotation overhead in multiple iterations of
annotation and training; and 3) the effectiveness of the training
designs and the inference optimizations in V-Droid.

6.1 Experiment Settings
6.1.1 Benchmark. V-Droid is evaluated on three widely-used
public benchmarks that cross varied types of mobile phones, system
versions, applications and user instructions.

AndroidWorld [20] includes 20 APPs, 116 tasks, infinite task in-
structions that support random initialization to benchmark mobile
agents abilities in real-execution environment. It includes challeng-
ing tasks that take more than 30 steps to complete and involves
multi-app interactions.

AndroidLab [34] is a emulation environment that includes 138
tasks in nine kinds of daily used APPs, such as map, calendar, books,
music. The agents are required to manage events, edit notes, and
check information, etc.

MobileAgentBench [26] provides a phone usage environment
built on 10 open-source applications and 100 tasks.

In contrast to static benchmarks, e.g., DroidTask [31] and An-
droidControl [13], the realistic and dynamic Android environment
we evaluate V-Droid can better reflect its ability. Among the three
benchmarks, AndroidWorld is designated as the in-the-domain test
set, whereas AndroidLab and MobileAgentBench are designated as
out-of-domain (OOD) test sets. During the training data collection
process, we rigorously excluded applications utilized in these two
benchmarks to ensure unbiased evaluation. The differences in data
distributions between the training set and the test benchmarks are
illustrated in Fig. 8b.

6.1.2 Baselines. V-Droid is compared with a wide range of main-
stream mobile agents, including text-only agents (T3A [20], Au-
toDroid [31], AutoDroid-V2 [32], MobileGPT [11], Ponder&Press
[29]), multimodal agents (M3A [20], SeeAct [39], AndroidArena
[33], CogAgent [9], APPAgent [14], MobileAgent [25]), and agents
with grounding models (Agent-S2 [1], Aria-UI [35], UGround [7],
and UI-TARS [18]). Advanced LLMs, including GPT-3.5, GPT-4,
GPT-4V, GPT-4o, GLM, DeepSeek-R1, Qwen, Llama-3.1, Claude
and Gemini, are included as the base models for these agents. All
the cloud-source LLMs are prompted using the M3A template in
AndroidWorld [20]. Note that the baseline differences across bench-
marks are attributable to the fact that some agents [14, 16, 18], were
not open-sourced or lacked reproducible implementations, making

it infeasible to evaluate them across all benchmarks. Therefore,
we followed the practice and used all baselines available in each
benchmark’s leaderboard to ensure fairness and completeness.

6.1.3 Metrics. V-Droid is evaluated against baselines using two
keymetrics: task success rate (SR) and latency.We directly adopt the
SR number reported in the respective baseline papers on the corre-
sponding benchmarks. To assess latency, we employ two measures:
the total step-wise latency of the entire agent and the decision-
making latency of the LLM. The total step-wise latency primarily
comprises the decision-making latency, the working memory up-
date latency, and the execution time. Latency is evaluated using 20
randomly sampled tasks from benchmarks.

6.1.4 Evaluation platform. We evaluate V-Droid across various
hardware configurations. The agent system runs within an An-
droid emulator on a PC with an Intel i9-10900X CPU. The LLMs
used by V-Droid and baseline models are tested on NVIDIA GPUs,
including 4090, A100, A6000. Unless otherwise specified, all time
measurements of V-Droid are conducted on a server with two
NVIDIA 4090 GPUs.

6.2 Performance Improvement
Improved task success rate. Fig. 9 demonstrates that V-Droid out-
performs existing mobile agents across three realistic MobileAgent-
Benchmarks, AndroidWorld, AndroidLab, and MobileAgentBench,
achieving success rate (SR) improvements of 5.2%, 2.1%, and 9.0%,
respectively. Compared to cloud-based LLM-powered agents (e.g.,
GPT-4, GPT-4o, DeepSeek-R1, Gemini-1.5-Pro, Claude-3.5), V-Droid
achieves 25.0% and 7.13% higher SR on AndroidWorld and Android-
Lab, respectively. Against advanced mobile agent frameworks (e.g.,
Agent-S2, AutoDroid, AppAgent), V-Droid improves SR by 5.2% on
AndroidWorld and 9.0% on the MobileAgentBench. Compared to
models that decompose decision-making into reasoning and ground-
ing (e.g., UI-TARS, Aria-UI, UGround, Aguvis), V-Droid demon-
strates a 14.3% SR improvement on the AndroidWorld. Against other
fine-tuned SLMs (e.g., Qwen-VL-7B-FT, Llama-3.1-8B-FT), V-Droid
achieves a notable 14.3% improvement on AndroidLab. Compared
with memory-driven agents like AutoDroid and MobileGPT, V-
Droid achieves over 36.2%, 21.0%, and 18.0% SR improvement on
the three benchmarks. Note that on MobileAgentBench, baselines
such as AppAgent [14] already outperform cloud LLMs so those
results are not included.

Unlike existing generation-based GUI agents that operate in con-
tinuous UI spaces, V-Droid simplifies decision-making by mapping
UI states to a finite action space and decomposing the process into
verification and completion, making it more tractable for SLMs. In
addition, the verifier-driven workflow embeds UI-specific knowl-
edge directly into the action candidates, thereby reducing the com-
plexity of decision-making. Moreover, the 𝑃3 training framework,
built on large-scale data, further enhances the verifier’s ability to
distinguish between similar actions, self-correct errors, and main-
tain awareness of task progress.

Reduced Latency. Fig. 10 highlights the significant speed ad-
vantage of V-Droid over SOTA mobile agents in both step-wise
and decision-making latency. While SOTA agents typically take
over 20 seconds per step, V-Droid takes just 4.3 seconds per step,
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Figure 9: Task success rate achieved by V-Droid compared to a range of mobile agents on three public benchmarks. The leftmost
bar corresponds to V-Droid.
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Figure 10: The step-wise latency and decision-making latency
of V-Droid compared to typical mobile agents.

which is 6.1× faster. Specifically, it takes 0.44s for the verification
(stage ③ in Fig. 4), 0.30s for the action completion (stage ④), and
3.03s for the working memory (stage ⑤). The action space and the
prompt construction takes less than 1ms (stage ①-②) and the photo
transition time takes 0.54s on average.

This efficiency gain stems from V-Droid ’s verifier-driven work-
flow for decision-making, which transforms traditional auto-regressive
decoding into a parallelized, prefilling-only scoring process. As
shown in Fig. 10b, V-Droid achieves up to a 32.1× speedup com-
pared to grounding-based agents that decompose decision-making
into reasoning and grounding (e.g., UI-TARS, Aria-UI, UGround,
Aguvis). Against UI-TARS [18] and DeepSeek-R1 with System-2
reasoning [8], V-Droid achieves 25.1× and 112.2× speed improve-
ments, respectively. To the best of our knowledge, V-Droid is the
first mobile GUI agent capable of near-real-time decision-making.
We further discuss design alternatives for optimizing working mem-
ory in Section 6.4.

The action completion in V-Droid is only needed in 12.4% cases.
In some input heavy tasks, the stepwise latency of V-Droid could
be longer. For instance, in calendar-related tasks, there are 25.5%
actions needs completion, which increases the average latency to
0.71s for the completion and 4.7s per step. In contrast, selection-
heavy tasks that do not require text input (such as opening Wi-Fi)
achieve 4.0s per step.

Table 2: Decision-making latency of GPT-4o, UI-TARS-7B
[18] with and without CoT, compared to V-Droid.

Agent GPT-4o UI-TARS-7B V-Droid

Decision w/ CoT w/o CoT w/ CoT w/o CoT Verifier

SR (%) 41.3 39.2 33.2 29.3 59.5
Latency (s) 6.70 5.74 10.6 0.97 0.74
Input Tokens 6.2K 6.2K 8.9K 2.9K 2.6K
Output Tokens 63.4 19.6 75.9 14.6 54.3

Comparison with CoT-Disabled Agents. The advantages of
the verification-driven workflow in V-Droid are further demon-
strated in Table 2 on AndroidWorld. We compare V-Droid with
the best agents using cloud-based GPT-4o and open-sourced local-
served UI-TARS-7B [18] (similar size with V-Droid) that support
executionwith or without CoT. Other agents (e.g., Agent-S2 [1]) rely
on mandatory CoT or perform even worse, thus are excluded for
this comparison. Disabling CoT reasoning in GPT-4o and UI-TARS
leads to reduced decision-making latency. However, this comes at
the cost of decreased SR. Despite removing CoT, both GPT-4o and
UI-TARS still exhibit higher latency than V-Droid, as they autore-
gressively generate full actions. In contrast, V-Droid achieves a sub-
stantially higher SR with lower decision-making latency. V-Droid
requires far fewer input tokens because it operates on simplified
XML, lightweight system instructions, and compressed memory,
whereas GPT-4o and UI-TARS depend on screenshots and excessive
historical context. Besides, GPT-4o’s latency does not scale pro-
portionally with output token reductions, which might due to the
internet latency dominate its runtime. These results further under-
score the generation–verification gap in GUI agents and highlight
the effectiveness of verifier-driven workflow.

Self-correction showcase. In Fig. 11, V-Droid explores one
reasonable action "Click Textfile.txt" but then realizes itself in a
wrong status that deviates from the goal. Later, it selects to navigate
back and long-press the button to reveal the file properties. Similar
cases are observed on the other two benchmarks. Notably, the
self-correction training improves the SR of V-Droid from 52.2% to
59.5% onAndroidWorld and slightly increases the average trajectory
length from 10.3 to 11.6 steps due to additional explorations. This
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training process

9k 27k 55k 110k
Training Data Pairs (log scale)

20

30

40

50

60

Ta
sk

 S
uc

ce
ss

 R
at

e 
(%

) Linear Scaling Trend

(a) AndroidWorld

9k 27k 55k 110k
Training Data Pairs (log scale)

20

25

30

35

40

45

50

Ta
sk

 S
uc

ce
ss

 R
at

e 
(%

) Linear Scaling Trend

(b) MobileAgentBench

Figure 12: Training time scaling law of the generative verifier.
As the data pairs scales from 9k to 110k, the performance of
the generative verifier boosts.

modest increase in trajectory length is a reasonable trade-off given
the substantial gain in overall success rate.

6.3 Training Scaling Law in V-Droid
V-Droid improveswithmore training data. Fig.12(a) and Fig.12(b)
illustrate how the V-Droid’s performance scales with increasing
training data. On AndroidWorld, the SR improves from 15.0% to
37.5%, then further scales to 47.4% and 59.5% as the number of
training data pairs increases from 9K (Human-Annotated) to 110K
(Human-Agent Joint-Annotated). Similarly, on the MobileAgent-
Bench, the SR increases from 17.0% to 49.0% as more training data
becomes available. This continuous improvement highlights that
V-Droid benefits from diverse app environments, instructions, and
execution trajectories, which gradually expand throughout the
training. The increasing dataset variety enhances the agent’s gener-
alization ability and robustness, leading to more effective decision-
making across different tasks.

Human annotation overhead decreases with better verifier.
As shown in Fig. 13a, the human annotation effort, measured as
the ratio of data pairs collected by human annotators, gradually
decreases across multiple iterative annotation and training cycles.
After training with 27K and 55K data pairs, the AUC improves from
0.55 to approximately 0.8, demonstrating a significant enhance-
ment in the verifier’s ability to predict decision correctness. This
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Figure 13: Leveraging Verifier-as-annotator saves the anno-
tation overhead. (a) As the agent ability improves, the anno-
tation overhead of the human annotators decrease. (b) The
verifier is an accurate decision classifier after two iterations
of training.

Table 3: Comparing V-Droid with the design alternatives of
agent architectures and corresponding training approaches
with training data from 1.1K task steps.

Methods Training Base Model SR (%)

V-Droid 𝑃3 Llama-3.1-8B 47.4

Selector SFT Llama-3.1-8B 35.8
Generator SFT Llama-3.1-8B 27.4

LLM-as-a-Judge – Llama-3.1-8B 0

LLM-as-a-Judge – GPT-4 34.5
Generator – GPT-4 29.6

improved accuracy enables human annotators to quickly rectify er-
rors and recover the data collection process with minimal overhead.
To further enhance the verifier’s capabilities, we continue to scale
the dataset using the human-agent joint annotation scheme in V-
Droid, ensuring progressive improvements in annotation efficiency
and model performance.

6.4 Comparison with Design Alternatives
Architecture and Training Alternatives. We craft three base-
lines to justify the designs in V-Droid, including LLM-as-a-Judge,
Selector and Generator. LLM-as-a-Judge follows the architecture
of V-Droid, but uses GPT-4 as the verifier. The action score is ob-
tained by extracting the output logits value of "Yes". Selector is
presented with XML descriptions and the extracted action lists and
is fine-tuned to output the correct action number. Generator follows
the architectures of T3A [20] but replaces the policy agent with a
fine-tuned LLama-3.1-8B that is trained to output thought chains
followed by the chosen actions. We adopt supervised fine-tuning
for both designs.

Table 3 highlights the limitations of LLM-As-A-Judge using
Llama-3.1-8B without training, which fails to assign accurate action
scores, resulting in a 0% success rate. While GPT-4 performs better
due to stronger reasoning and instruction-following abilities, it
also outperforms its own generator-based approach, reinforcing
the generation-verification gap. However, it is observed that GPT-4
often assigns high scores to multiple actions or low scores to all
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Table 4: Decision Alternatives on Working Memory.

Design Alter. SR Latency (s)

LLM-based 59.5% 3.03
Rule-based 46.1% 1e-5

Actions History 40.0% –

actions, exposing a misalignment between token space and action
space. Training Llama-3.1-8B as either a selector or generator im-
proves success rates to 35.8% and 27.4%, respectively. However,
these models still underperform compared with V-Droid, which
leverages a verifier-driven workflow with 𝑃3 training. The advan-
tage of 𝑃3 training comes from its pair-wise learning structure,
where each step with 𝑁 available actions generates 𝑁 − 1 train-
ing pairs, effectively amplifying the training data by 𝑁 − 1 times.
Additionally, pair-wise training enhances the model’s ability to
distinguish similar UI elements and actions, a crucial factor for
accurate action selection.

Working memory alternatives. We observe that the step-wise
latency of V-Droid is primarily constrained by the time required to
construct working memory using an LLM, from 0.7 seconds to 3.8
seconds. It is because we use GPT-4 to update the working memory
in current implementation. To mitigate this bottleneck, we explore
two alternative designs at test time aimed at reducing latency: 1)
ActionHistory Only – This approach retains only a sequential log
of past actions as the working memory. 2) Rule-based Memory
– This method generates concise, structured descriptions of past
actions and UI changes by applying rule-based heuristics. It extracts
and compares UI content descriptions before and after an action,
enabling a high-level summary. For instance, Clicked the ’Save’
button. Now an ’OK’ text box appears, indicating that the action
likely succeeded.

As shown in Table 4, using only action history reduces the SR
on AndroidWorld to 40.0%, as the agent struggles to retain key
contextual information, leading to repeated actions and suboptimal
decisions. Incorporating rule-based memory improves SR to 46.1%,
demonstrating the benefit of structured summaries. However, the
SR remains significantly lower than when using LLM-based mem-
ory construction, underscoring the importance of high-level action
impact summarization and the ability to retain crucial contextual
information across steps.

6.5 System Overhead
Running the verifier of V-Droid on GPUs requires approximately
16GB of memory, including the KV cache. Across the evaluated
benchmarks, V-Droid verifies an average of 50.3 actions per task
step.

Such verifications could be significantly accelerated with the
batching inference and prefix caching. We highlight the decision-
making latency on 4× NVIDIA GTX A100 80G, 4× NVIDIA GTX
A6000, and 2× NVIDIA GTX 4090.

As shown in Table 5, given the optimization of the prompt format
in V-Droid that maximizes the length of the shared prefix, a 10×
speed up is obtained from the prefix caching across different actions,
steps, and tasks. Furthermore, V-Droid turns the auto-regressive

Table 5: Decision-making latency with andwithout the prefix
caching on different instances of 4090, A100 andA6000GPUs.

GPU A100 4090 A6000

Num. 4 2 1 1 2 1 1 4 2 1 1
P.C. W/ W/ W/ W/O W/ W/ W/O W/ W/ W/ W/O
Latecy (s) 0.717 0.932 1.446 7.116 0.744 1.034 7.847 0.808 1.027 1.555 11.36

decision making scheme of LLM agents into the parallel pre-filling
only verification scheme, which can be conducted in batch on mul-
tiple GPUs. The parallelism further decreases the selection time to
0.42s, 0.44s, and 0.52s with 4× A100, 2× 4090, and 4× A6000.

We also try to infer the overhead running the verifier on mo-
bile devices. Taking the shared prefix into account, the total input
token count for all action verifications per step is approximately
1.1K tokens. Given a prefill speed of 450 tokens per second on the
Qualcomm Snapdragon 8 Gen 3 NPU [17], the decision-making
latency is around 2.5 seconds.

6.6 Failure Study
We conducted amanual analysis of the failure cases for V-Droid and
MobileGPT across more than 300 tasks spanning three benchmarks.
We identify four categories of failure: 1) Hallucinated decisions,
where erroneous actions are taken despite the agent possessing
accurate memory and full observational input; 2) Inaccurate mem-
ory, where erroneous contextual memory leads the agent to make
wrong decisions; 3) Incomplete actions, wherein available action
types are insufficient to complete the task; and 4) Modality lim-
itations, where tasks that demands vision capabilities cannot be
accomplished by text-only LLM agents. MobileAgentBench tasks
inherently require minimal perception and memory, leading to a
high percentage of failures in the hallucinated decision category.

As illustrated in Fig. 14, failure cases of MobileGPT primarily
stem from suboptimal decision-making. For example, given the task
instruction Add one expense ($307.01, in Health Care categories) to
APP Expense Pro, MobileGPT erroneously inputs the wrong amount
and neglects to select the Health Care category, whereas V-Droid
accurately provides all required information. There are still a large
portion of failure cases of V-Droid in hallucinated decisions. For
example, when required to share a file, V-Droid presses the file
to read it instead of long-pressing it to reveal the sharing button,
which might due to the lack of functional understanding of some
UI elements. This observation further underscores the necessity of
a larger scale training on more diverse tasks. Additional sources of
failure of V-Droid include an incomplete action space caused by
inaccurate information from the accessibility service and the lack
of visual processing required for interpreting images and videos,
which are further discussed in § 7.

7 Discussion
Multimodality. Although V-Droid is currently text-only, the pro-
posed approach can also be extended to train multimodal mobile
agents. For instance, V-Droid can be integrated with a grounding
model with vision capability, which generate the initial actions for
V-Droid instead of relying on accessibility services, followed by
the action verification and completion process. We also plan to
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Figure 14: Failure Analysis of MobileGPT and V-Droid.

further train a vision-language model as the verifier as the future
work, which assigns scores to actions based on the vision and text
information jointly.

Security and privacy. In V-Droid, we adopt methods similar
to those proposed in [31] to conduct security and privacy checks
for actions prior to execution. Additionally, 𝑃3 training offers a
unique opportunity to train V-Droid to adhere to security guide-
lines, which will be explored as part of our future work.

8 Conclusion
For the first time, V-Droid demonstrates near-real-time, effective
decision-making for mobile agents. It discretizes the decision space
for mobile interactions into a finite set of action candidates, trans-
forming the autoregressive process of generator-based agents into a
parallelized, prefilling-only scoring mechanism using a generative
verifier. 𝑃3 training and the scalable human-agent joint annotation
framework, significantly enhances the verifier’s decision-making
capabilities. Experimental results showcase the training scaling law
of the verifier-driven architecture for mobile task automation.
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