Published as a conference paper at ICLR 2026

PRORE: A PROACTIVE REWARD SYSTEM FOR GUI
AGENTS VIA REASONER—ACTOR COLLABORATION

Gaole Dai* Shiqi Jiang' Ting Cao Yuqing Yang

NTU Microsoft Research Tsinghua University Microsoft Research

Yuanchun Li Rui Tan Mo Lif Lili Qiu

Tsinghua University NTU HKUST Microsoft Research
ABSTRACT

Reward is critical to the evaluation and training of large language models (LLMs).
However, existing rule-based or model-based reward methods struggle to gen-
eralize to GUI agents, where access to ground-truth trajectories or application
databases is often unavailable, and static trajectory-based LLM-as-a-Judge ap-
proaches suffer from limited accuracy. To address these challenges, we propose
PRORE, a proactive reward system that leverages a general-purpose reasoner and
domain-specific evaluator agents (actors). The reasoner schedules targeted state
probing tasks, which the evaluator agents then execute by actively interacting with
the environment to collect additional observations. This enables the reasoner to as-
sign more accurate and verifiable rewards to GUI agents. Empirical results on over
3K trajectories demonstrate that PRORE improves reward accuracy and F1 score
by up to 5.3% and 19.4%, respectively. Furthermore, integrating PRORE with
state-of-the-art policy agents yields a success rate improvement of up to 22.4%.

1 INTRODUCTION

Verifiable rewards are pivotal for enabling the continual evolution of large language model (LLM)-
based agents |Wang et al.|(2024b); |Guo et al.| (2025); [Silver & Sutton| (2025). Within this paradigm,
LLMs operate as policy networks, undertaking user requests to generate reasoning, invoke tools and
functions, and manipulate graphical user interfaces (GUISs) |Q1 et al| (2024)). Rewards function as
quantitative feedback signals that steer the agent’s learning process [Gao et al.| (2024), promoting
optimal behaviors while discouraging suboptimal actions.

Reinforcement learning with verifiable rewards (RLVR) has the potential to significantly advance
GUI agents Wang et al.| (2024c); [Xu et al.| (2025); Wang et al.| (2025). A simple yet effective bi-
nary reward for GUI automation is to assess whether the specified task has been successfully com-
pleted. To obtain such a reward signal, existing methodologies could be generally categorized into
rule-based and LLM-based, as illustrated in Figure[I} In the rule-based paradigm, human experts
manually construct verification code snippets to ascertain the realization of the intended state for
each task. For instance, AndroidWorld Rawles et al.| (2024)) and WindowsAgentArena |Bonatti et al.
(2024) datasets contain more than 116 and 150 manually engineered unit testing code, respectively,
to provide grounded signals of task accomplishment for individual GUI automation tasks. While
this approach offers high accuracy, it is inherently limited in scalability, as the manual creation of
unit testing scripts demands substantial human effort and resources, thereby preventing its use as a
reward mechanism for large-scale GUI agent training.

LILM-as-a-judge is thus proposed to enable scalable agentic rewards |Gu et al.| (2024)); Bai et al.
(2024). Leveraging the capabilities of advanced LLMs such as GPT-4o, this approach evaluates
GUI task trajectories, often represented as screenshots, by prompting the model with queries such
as, “Based on the task trajectory, please determine if the task is completed”. LLM-as-a-judge offers

*Work done during internship at Microsoft Research.
TCorresponding authors

Published as a conference paper at ICLR 2026

) Task N ([Task |4 Probing Task

Task

------ > rtr oy in i
--Execute --------~y~----------A ‘Execute --------------------- “Execute oy oTrer e *‘ _____
- Task Automation Task Automation
OO0 | [9.0.9.0,}
B b hh e Screenshots
Testing Code (el
(]
Judge R e
=l LLM Reasoning
““Reward -----"""---ooo oo “Reward=--------"--
(ves) (XS]
Testing-as-a-Judge LLM-as-a-Judge Reasoner-Actor-as-a-Judge

Figure 1: PRORE proposes to reward GUI agents using reasoner-actor-as-a-judge, rather than relying
on expert to hand craft testing code or LLM to judge static trajectories.

an autonomous and scalable framework for allocating reward signals Wang et al.|(2024c). However,
we observe that this approach is considerably less effective for rewarding GUI agents.

The rationale underlying the failures of LLM-as-a-judge for GUI agents is twofold: incomplete state
observability of GUI tasks and limited domain-specific capabilities of LLMs.

First, GUI task states are typically monitored passively through specific modalities, such as screen-
shots |Gou et al.| (2024). However, owing to the inherent complexity and dynamic nature of GUI
interactions, these states frequently remain incompletely observable. For instance, as depicted in
Figure [I] during the monitoring of the “faking two photos” task exclusively through screenshots,
the captured lacks critical success indicators, thereby precluding even human evaluators from reli-
ably ascertaining task completion. Moreover, observations are typically conducted at fixed intervals,
potentially omitting critical state transition details. Consequently, GUI state observability remains
inherently incomplete, thereby compromising the efficacy of the reward system.

Second, evaluating GUI task states requires domain-specific GUI knowledge and expertise, which
general-purpose LLMs utilized in reward systems, such as GPT-40 and Gemini, fundamentally
lack Dai et al.| (2025). Most general-purpose LLMs demonstrate suboptimal performance on GUI-
related tasks [Qin et al| (2025). Although post-training may enhance their domain-specific pro-
ficiency, training of a domain-specific reasoner as the reward model still necessitates annotated
datasets, thereby constraining its scalability. Consequently, deploying a general-purpose LLM to
assess intricate domain-specific details intrinsically undermines the efficacy of the reward system.

To develop a scalable and accurate reward for GUI agents, this paper introduces PRORE, a proactive
reward system based on reasoner—actor collaboration. The key idea of PRORE is to introduce the
additional state probing tasks planned by the reasoner. These tasks are executed by domain-specific
evaluator agents (actors) that interact with the environment to retrieve key states relevant for task
verification. Instead of relying solely on the policy agent’s execution trajectory, PRORE assigns
rewards through high-level reasoning over the outcomes of these probing tasks.

Specifically, the reasoner, i.e., GPT-40, schedules the state probing tasks, conditioned on the orig-
inal task objective and its expected outcome. After the policy agent finishes execution, evaluator
agents are invoked to automate these probing tasks. They then summarize both the original task
trajectory and the probed Ul states into high-level, verifiable claims. The reasoner performs final
judgment through chain-of-claims reasoning, which analyzes the consistency between the policy
agent’s claims and those generated from the evaluators’ probing. An intuitive example is illustrated
in Fig.|1} given the original task “faking two photos”, a probing task “retrieving newly taken photos”
is formulated, with the expected outcome that “two photos should have appeared in the gallery”.
The evaluator agent executes this probing task and observes that “there are two newly captured pho-
tos from 11:00 AM to the present”. The reasoner then assesses the consistency between the claims,
thereby probably concluding that the original task has been successfully accomplished.

Published as a conference paper at ICLR 2026

These designs address the fundamental challenge of rewarding for GUI agents in the following ways:
1) PRORE transforms the reward system from passive monitoring to proactive probing. The intro-
duction of state probing tasks provides a complementary perspective to ascertain whether the orig-
inal task has been accomplished; 2) PRORE decouples the general-purpose reasoner from domain-
specific GUI judgments. Domain-specific actions are executed by domain-specific actors (evaluator
agents), while the general-purpose reasoner concentrates solely on high-level logical consistency
verification, which falls within the core competencies of general-purpose LLMs; 3) PRORE intro-
duces a unique opportunity for co-evolution between the policy agent and the reward system. The
execution of state probing tasks can be further optimized in tandem with the evaluator (policy)
agent’s improvement, enabling a more sophisticated reward system that, in turn, facilitates acceler-
ated progress for the policy agent.

We evaluate the performance of PRORE on typical GUI tasks. Specifically, PRORE is evaluated on
over 3K distinct task traces collected from three benchmarks: AndroidWorld Rawles et al.| (2024),
AndroidLab Xu et al.| (2024)), and MobileAgentBench |Wang et al.|(2024a). The results demonstrate
that, compared to existing state-of-the-art LLM-as-a-Judge approaches, PRORE enhances reward
accuracy and F1 score by up to 5.3% and 19.4%, achieving an average accuracy of 93.7%, thereby
becoming the first reward system to surpass 90% reward accuracy. In addition, pilot experiments on
OSWorld and OSWorld-Chrome Xie et al|(2024) show that PRORE improves reward accuracy by
4.0% on PC tasks and 6.5% on web tasks. Moreover, when incorporated into policy agents to guide
their test-time scaling strategy, PRORE elevates the success rate by at most 22.4%.

In summary, the key contributions of this works are as follows:

* We systematically study and empirically demonstrate the limitations of existing trajectories-based
LLM-as-a-judge for GUI agents.

* We propose PRORE, a proactive reward system with a general reasoner that performs high-level
scheduling and reasoning and domain-specific evaluator agents that actively probe states.

* PRORE achieves consistently higher reward accuracy and F1 score on different agents and bench-
marks, and significantly improves the success rate of policy agents through test-time scaling.

2 RELATED WORKS

2.1 GENERAL REWARD MODELS IN BROADER TOPICS

General reward models are widely used to support experience-based training of LLMs, without
requiring pre-collected ground truth or handcrafted rules from domain experts|Gu et al.|(2024); Son
et al.| (2024). Such models typically assign either absolute scores to individual answers or relative
scores by comparing answer pairs [Lin et al.| (2025); Xiong et al.[(2025);|Liu et al.[(2025b)). Beyond
these, some works have proposed building reward systems through the agent-as-a-judge paradigm,
where agents are equipped with tools such as web search, code execution, or document reading to
assist reward generation [Zhuge et al.| (2024); [Yu| (2025). However, these reward systems remain
limited in scope and cannot be directly applied to GUI agents in the wild, which execute diverse
task types that cannot be verified by a predefined toolbox.

2.2 GUI AGENTS FOR TASKS AUTOMATION

LLM-based GUI agents, which operate across websites, desktops, and smartphones to handle a wide
spectrum of tasks ranging from professional work to everyday activities, have recently attracted sig-
nificant attention |Lai et al.|(2025b); |Dai et al.| (2025); |Qin et al.| (2025); |Gu et al.| (2025); |Ye et al.
(2025). LLMs are primarily employed either as generators to propose actions and decisions or as
verifiers, to evaluate actions|Gou et al.|(2024);|Qin et al.|(2025)); Liu et al.| (2025a); Dai et al .| (2025).
To improve the decision-making ability of GUI agents, various training paradigms—including su-
pervised fine-tuning, direct preference optimization (DPO), and reinforcement learning—have been
applied on large-scale datasets |Luo et al.| (2025); Tang et al.|(2025a); Dai et al.| (2025); |Wang et al.
(2024c). Within this pipeline, accurate reward signals are crucial, as they enable automatic data col-
lection at scale, which in turn underpins both dataset curation and model training Tang et al.|(2025al);
Li et al.| (2025);[Qi et al.| (2024).

Published as a conference paper at ICLR 2026

Policy Agent Policy Trajectories 1) Parallel State Probing

Tasks

-0 *O% -O

‘ Policy Claims i-1 H Policy Claims i ‘

] !

—> Evaluator s j-1 —> Evaluatol

Evaluator |'
Claims i-1 [}

I
!|,[Probing @) Evaluator |!
) ‘tz“’”o—’ Claims i] o

Reward
4

SR SR

Evaluator Agent Evaluator Probed States N lterations ()

Figure 2: PRORE overview. Figure 3: Test-time Scaling of PRORE.
2.3 GAPS BETWEEN GENERAL REWARDS AND REWARDS FOR GUI AGENTS

There are some pioneering works on designing reward methods for GUI agents Bai et al.| (2024));
‘Wang et al.|(2024c); Luo et al.[(2025); |Lai et al.| (2025a). They develop outcome or step-wise reward
models to judge the success of GUI agents passively using the trajectories of GUI agents|Tang et al.
(2025b); [Hu et al.[(2025). However, their performances are far from satisfying due to the partial
observations of GUI agents to the states and the lack of domain knowledge of general-purpose
LLM. One concurrent work, |Gou et al.|(2025) constructs rubic trees for predefined web search tasks
and checks key points with url, which lacks generalizability to in-the-wild tasks without such url.
Instead, PRORE is the first reward system for GUI agent with a generalist reasoner to schedule state
probing and evaluator agents to proactively probe states.

3 PROACTIVE REWARD SYSTEM WITH AGENT-IN-THE-LOOP

3.1 PROBLEM FORMULATION.

Given the users instruction G, a policy agent 7 interacts with the environment consecutively, which
forms a N steps trajectory 7 = (so, ag, 1,41, - - -, S7). S is the observation of 7 on step ¢ and a is
the ¢-th actions. The goal is to generate an accurate binary outcome reward r on 7.

Lemma 1. Let the success rate of the policy agent be p, and the reward accuracy be p.. Then,
under test-time scaling with trial budget N, the final success rate Py;yq; satisfies

PaPc

Pfina,l = [1 - (1 - Q)N] +pa(1 - q)N7 where ¢ = papc + (1 - pa)(l 7pc)'

In particular, given p, > 0, Pfinq monotonically increases with respect to p. whenever p. > 0.5.

A full proof is deferred to Appendix [B} Our work focuses on improving p. and Pyinai.

3.2 FRAMEWORK OVERVIEW

Instead of applying LLM-as-a-Judge to generate a reward r from trajectories, PRORE introduces
a general LLM reasoner .7 working in collaboration with domain-specific evaluator agents 7. for
state probing, as shown in Figure[2] Given the original tasks, the reasoner (7 first schedule probing
tasks for the evaluator agents. Then the evaluators 7. further explore the environment to collect key
state information. The policy agent’s trajectories and the probed states are then summarized by 7,
into claims about task progress. Finally, the reasoner 7 analyzes the relationships and consistency
among these claims, performing chain-of-claims reasoning to generate the outcome reward.

3.3 PROACTIVE AGENT-IN-THE-LOOP PROBING

The partial observation to the GUI task states by the policy agents prevents LLM-as-a-judge to
make accurate decisions. To handle this problem, PRORE introduces a set of evaluator agents to
proactively probe states and collect additional information. The general-purpose LLM first schedule
the state probing tasks for the evaluator agents based on the tasks inputs.

Published as a conference paper at ICLR 2026

Table 1: The probing tasks are generally easier than the execution tasks.

AndroidWorld MobileAgentBench ~ AndroidLab
SR Steps SR Steps SR Steps

State Probing 66.7% 6.2 64.0% 6.8 65.9% 6.1
Execution 53.6% 1477 44.0% 11.9 275% 11.8

Task Type

State Probing Tasks Scheduling. The general-purpose LLM reasoner is instructed to analyze the
expectations and requirements specified in the original user instructions G, and to identify the key
states necessary for judging task success. Based on this analysis, the reasoner formulates state prob-
ing tasks, which are then issued as instructions for the evaluator agents to retrieve the corresponding
key states from the environment.

Ge ~J(G | Exp, &, L), Exp=J(G), GeG. (1)

where Exp is the analyzed expectations for the task G, & refers to the few shot examples provided
and L is the summarized guidelines for mapping the tasks to the probing tasks. To illustrate, when
instructing the policy agent to delete a file A, the corresponding state probing task G° is to search
whether A still exists in the target applications. The generation of expectations and state-probing
tasks primarily rely on the reasoning capability of general-purpose LLM on analyzing the users
expectations without the need of much domain-specific knowledge of APP and UI interactions.
More examples on the state probing tasks are provided in Appendix [C|

State Probing with Evaluator Agents. Given the state probing tasks G, evaluator agents are
provoked to interact with the environment in a step-wise manner to collect additional observations
on key states right after the execution of the policy agent.

Sf—&-l = ‘7:(553 af), a;y = WE(S?S,GE))

where F is the status transition of the environment; sy is the state of captured by the evaluator agents.
The probing process mainly leverages the Ul-related knowledge in the GUI agent while minimizing
the requirements on its reasoning capability on understanding users expectations.

The Execution-Probing Gap. The state probing task 7. is generally easier than other types of
execution tasks such as creation, status modification, or deletion. As shown in Table [T} V-Droid
Dai et al|(2025)) achieves a 23.8% higher success rate on state probing tasks and the trajectories are
50.3% shorter on average. While both probing and execution tasks involve knowledge on UI and
applications, probing only requires navigating to the correct page and does not demand consecutive
error-free execution. Because of this relative simplicity, the evaluator agent, and by extension the
reward system, is more generalizable than the policy agent. This generalizability allows the reward
system to effectively guide both the test-time scaling and the training of policy agents.

We also notice that there are some long-horizon tasks that demand checking multiple states across
different pages. In those cases, the probing tasks could be formulated into multiple subtasks, based
on which the evaluator agent execute sequentially to obtain complete probed states.

3.4 OUTCOME REWARD WITH CHAIN-OF-CLAIMS

Chain-of-Claims. To avoid overwhelming the general-purpose LLM with too much low-level GUI
details in the probed states, the evaluator agents summarize the trajectories of the policy agent and
the probed states into chain-of-claims. Specifically, given a trajectory 7 generated by the policy
agent 7, the evaluator agent observes this sequence and the additional probed UI states to form
claims about task progress. We define two sets of claims:

D C™ = {cf,c5,...,c} _}: Ny claims generated from the policy agent’s trajectory 7.
2) C™ = {cf°,c5¢,. .. 70712,; }: N, claims made by the evaluator agents 7.
Each claim c is structured as:
c = Claim(ty, = {s¢, St41,a¢}), where g; € G 3)

where 7, is a subtrajectory of the policy agent’s trajectory 7 or a sequence of probed states pro-
duced by the evaluator agents. We instruct the evaluator agents to generate multiple claims covering

Published as a conference paper at ICLR 2026

different parts of the trajectory, which is observed to be more effective than segmenting trajectories
via state clustering on learned embeddings.

Given these claims, the general-purpose LLM reasoner 7 performs chain-of-claims reasoning to
produce the final reward by linking and comparing policy and evaluator claims:

r= J(G>EXP76)7 C= {c?uc;‘rearij} (4)
where r;; denotes the relationship between a policy claim ¢ and an evaluator claim c}re . The relation
can be confirming, contradicting, complementary, or unrelated.

Claim Filters. Irrelevant evidence and claims has the potential to compromise the accuracy of fi-
nal judgments. Therefore, within the reasoner, we integrate a claim filter that explicitly identifies
and eliminates irrelevant or misleading claims prior to the chain-of-claims. By prompting the rea-
soner, the claim filter systematically examines the relationship between each evaluator claim and the
original task instruction, discarding any claims lacking a causal linkage to the target probing tasks.

Minimizing Overhead. The generation of claims on the policy agent trajectories and the probed
states by the evaluator agents requires processing multiple screenshots and abundant screen descrip-
tions. To minimize the processing overhead, we further filter out noisy states in the trajectories
without harming the quality. Specifically, the states related to operations on home-screen and con-
secutive identical states (some actions do not lead to state transition) are excluded. When there are
loops detected in the trajectories, the loops could be discarded if identified by the 7 to be unrelated
with the task goal G (e.g., some redundant explorations) only using HTML descriptions.

3.5 TEST-TIME SCALING FOR STATES PROBING IN PRORE

In some complex tasks or scenarios that a single state probing trial is insufficient for identifying
the key evidence, two forms of test-time scaling, including parallel state probing and iterative state
probing, are further incorporated to improve the state probing quality in PRORE shown in Figure 3]

Parallel State Probing. After the policy agent completes the trajectory for one task, the final state
is distributed to multiple emulator instances. On each instance, the proactive state probing are
conducted in parallel. Later, based on the claims from each evaluator agent and the policy agent,
the LLm reasoner formulate the chain-of-claims and assigns the outcome reward. To support the
parallel state probing, we record the actions per steps of policy agents and re-execute those actions
in sequence on different emulator instances. The target Ul elements are matched with the recorded
actions via fuzzy matching on key parameters and elements semantics.

Iterative State Probing. The iterative state probing generates new state probing tasks based on the
state probing task and claims in the previous round. Specifically, there are N rounds of search. In
round n, the probing tasks G.(n) are generated with:

Ge(n) ~J(G | Exp,&,L,Ge(n—1),7),GEG,n=1,...,N (5)

The results from different trials are aggregated via majority voting. The quality of the state probing
tasks and the quality of collected states can be gradually improved based on the previous experience,
which improves the overall reward accuracy.

4 EVALUATION

4.1 EXPERIMENT SETTINGS

Baselines. We compare PRORE with state-of-the-art reward methods, covering both outcome reward
models (DigiRL Bai et al|(2024), DistRL |Wang et al.| (2024c)), WebRL |Qi et al.|(2024)) and one
progress reward model (StepCritic |Lai et al.[(2025a)). To ensure fairness, we rigorously follow the
experimental settings and prompts described in the original papers when reproducing their methods
and reporting results. Unless otherwise specified, the results of PRORE are reported without test-
time scaling when compared against baselines for fairness.

Benchmarks. We conduct comprehensive evaluation of PRORE on over 3k traces collected from
three dynamic benchmarks, including AndroidWorld Rawles et al.| (2024), AndroidLab [Xu et al.
(2024), and MobileAgentBench [Wang et al.| (2024a)), using state-of-the-art GUI Agents Dai et al.

Published as a conference paper at ICLR 2026

Table 2: Reward accuracy and F1 across methods and policy agent.

Method Last N States V-Droid M3A UI-TARS-7B Avg
Acc F1 Acc F1 Acc F1 Acc F1
DistRL 1 713 769 704 685 842 250 853 56.8
Full 87.0 889 81.7 79.6 89.5 14.3 86.1 60.9
DigiRL 1 76.5 803 748 734 84.2 100 785 546
Full 84.5 87.1 826 808 86.8 11.7 84.6 59.9
WebRL 1 82.6 85.1 81.7 79.2 93.0 20.0 85.8 614
Full 852 87.0 81.7 792 939 22.2 86.9 62.8
Step-Critic 1 852 87.0 81.7 794 930 200 86.6 61.8
Full 89.6 91.0 826 79.6 930 200 88.4 63.6
PRORE Proactive 93.1 934 914 889 96.5 66.7 93.7 83.0

Avg Reward Acc. (%)
Avg Reward Acc. (%)
Avg Reward Acc. (%)

(a) AndroidWorld (b) AndroidLab (c) MobileAgentBench

Figure 4: Results Comparison on different benchmarks. The average results on different agents are
reported. The I/F indicates that the reward uses the last state (/) or the full trajectory (F).

(2023); [Qin et al| (2025); [Rawles et al| (2024). For UI-TARS (2025), we adopt UI-TARS-

1.5-7B in the naive agentic mode to generate thinking and grounding.

Metrics. To evaluate the effectiveness of rewards, we report both the reward accuracy and FI
score by comparing the predicted rewards from baselines and PRORE with the ground-truth rewards
provided by the benchmarks. In addition, we measure the success rate of policy agents under test-
time scaling when guided by these rewards (See § [3.1)and Appendix [B).

Implementation details. We adopt Gemini-2.5-Pro as the general-purpose LLM for scheduling
state probing tasks and assigning outcome rewards. Unless otherwise specified, V-Droid is employed
as the evaluator agent due to its high decision-making quality and prompt execution speed. The step
budget for key evidence retrieval is set to be no greater than the length of the policy trajectories.

4.2 RESULTS COMPARISON

Different GUI Agents. Table [2] reports the performance of PRORE compared with state-of-the-art
baselines. PRORE achieves an average accuracy of 93.7%, which is 5.3% higher than the best-
performing baselines. Moreover, its F1 score is 19.4% higher than those of the baselines, demon-
strating its robustness in handling diverse mobile GUI agents. We observe that while baselines
achieve relatively high accuracy on UI-TARS trajectories, their F1 scores remain low. This dis-
crepancy arises from their inability to correctly judge the success of UI-TARS-1.5-7B trajectories,
whose naive agentic mode yields only a 7.9% success rate. In contrast, PRORE effectively identifies
the correct key states through evaluator agents, leading to superior performance on challenging and
imbalanced trajectories.

Different Benchmarks and Tasks. As shown in Figure[d, PRORE achieves accuracy improvements
of 5.2%, 1.5%, and 3.0% on AndroidWorld, AndroidLab, and MobileAgentBench, respectively. In
terms of F1 score, PRORE outperforms the best baseline by 19.4%, 10.5%, and 7.5% on the three
benchmarks. These results highlight the robustness of PRORE across diverse applications and task
types. While policy agents often struggle to generalize to unseen tasks or applications, PRORE
benefits from the execution—probing gap (see § [3.3), which makes generalization more attainable.

Published as a conference paper at ICLR 2026

73 70 o5
—_ —~ 65 B Sequential State Probing
X 70 X 94 Parallel State Probing
= = 60 S
Y67 9 <93
& @55 3
64 €4 — —
w w0 3
a 250 3
V61 v <0
I+ 0 45 —+— Golden ~—— DigiRL o . . .
& 58 3 40 ProRe —— StepCritic g0
—e— DistRL —=— WebRL 2 - . . .
55 35 89
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 M
2

@
@

Trial Budget Trial Budget 1 2 3
(a) V-Droid-8B (b) M3A (GPT-40) Number of Evaluator Trials

Figure 6: Test-time scaling of policy agents with different rewards. Figure 7: Test-time scaling of
(a) V-Droid-8B, (b) M3A (GPT-40). PRORE on challenging tasks.

Extension to PC/Web. Owing to the decoupled reasoner-actor reward paradigm, PRORE exhibits
significant potential for adaptation across diverse environments and tasks, including both PC and
web domains. We have further conducted pilot experiments on OSWorld. Specifically, PRORE
is evaluated on 100 randomly sampled tasks from OSWorld-PC and all 46 web-based tasks from
OSWorld-Chrome. For evaluation, we employ Claude-Sonnet-4.5 as the evaluator agent to perform
proactive state probing, and all other settings are consistent with those outlined in § 1]

Table 3: Reward Accuracy on PC and Web tasks.

Benchmark WebRL DigiRL DistRL StepCritic PRORE
OSWorld 86.0 88.0 88.0 81.0 92.0
OSWorld-Chrome 87.0 84.8 82.6 87.0 93.5

As shown in Table [3] across both PC and Web tasks, PRORE achieves the highest reward accuracy,
surpassing prior methods by 4.0% on OSWorld and 6.5% on OSWorld-Chrome. Existing approaches
perform sub-optimally primarily due to incomplete observations of PC/web states and the domain
knowledge gap of the reasoners when used as reward models. In contrast, PRORE (i) proactively
collects key states/observations by interacting with the PC or website, and (ii) decouples general
reasoning from domain-specific GUI judgments through its reasoner—actor paradigm. These results
underscore PRORE ’s robustness and generalization capability across different platforms and task.

Test-Time Scaling for Pol-
icy Agents. We fur- Policy Trajectories Probed States
ther evaluate the success -

rate (SR) of two policy
agents, V-Droid Dai et al.
(2025) and M3A (GPT-
40) [Rawles et al.| (2024),
under different trial bud-
gets. Figure [6] shows that,
guided by PRORE, the suc-
cess rate (SR) of V-Droid
improves from 56.5% to
67.2%. Similarly, the SR of
M3A (GPT-40) increases

 Marker o e

g MeetingMinutes

p StudyGuides

Evaluator Claims:
1) The Bluetooth setting is enabled.

Policy Claims:
1) selected the note 'shy_king copy.md' and designated the
"MeetingMinutes' folder as the desti for the move.
2)failed to confirm the move

ProRe: the Evaluator's check of the final state confirms that
the file was successfully moved to the correct location.
Judgement: Failure Judgement: Success

LLM-as-a-judge: a file named final_shy_king_copy.md is

by 22.4%. The SR gains stitpesen.

achieved with PRORE are

3.9% and 4.3% higher than Fjgyre 5: One quantitative example. The task is "Move the note

those obtained with other shy_king_copy.md from StudyGuides to MeetingMinutes.” .
reward methods, demon-

strating its superiority in

guiding policy rollouts. To further validate this, we conduct large-scale simulations based on
Lemma [T} which highlight the effectiveness of accurate rewards in enhancing test-time scaling of
policy agents (see Appendix [B).

Published as a conference paper at ICLR 2026

Table 4: Ablation study of design components in PRORE.

Design Components | Metrics
Proactive State Probing . . Iterative State
State Probing Task Scheduling Chain-of-Chaims Probing Acc TP TN FP FN
X X X X 88.8 49.1 397 77 34
v X X X 89.5 456 436 26 79
v v X X 914 457 457 17 69
v v v X 93.1 49.1 440 34 34
v v v v 948 500 448 2.6 2.6

Table 5: Reward accuracy of PRORE with ~ Table 6: Reward accuracy of PRORE with different

different reasoners. evaluator agents.
Reasoners Acc F1 Evaluator Agent Policy SR Acc F1
Gemini-2.5-Pro 93.1 934 V-Droid-8B 59.5 93.1 934
Gemini-2.5-Flash 87.7 87.7 UI-TARS-72B 35.7 86.2 87.3
GPT-5 862 860 Qwen3-VL-4B 453 85.7 86.0
GPT-40 85.0 86.0 M3A (GPT-5) 56.9 90.5 91.7
M3A (GPT-40) 41.3 883 874

IlNlustrative Examples. Figure |5| shows that the policy agent successfully locates the target file,
performs the necessary move actions, and returns to the St udyGuides folder. However, the LLM-
as-a-judge is misled by the presence of final_shy_king_copy .md due to excessive clutter on
the final screen and consequently makes an incorrect judgment. In contrast, PRORE proactively
probes the relevant states within the target folder using an evaluator agent, which provides verifiable
evidence of the policy agent’s success. This example also highlights the execution-probing gap:
while the execution trajectory spans 11 steps, the evaluator only requires 5 steps to probe the key
states. More examples are provided in Appendix D}

4.3 ABLATION STUDY

We further validate the effectiveness of each design component in PRORE through ablation stud-
ies. When probing task scheduling is removed, we replace it with a simple rule-based strategy by
prompting: “What are the key states to verify whether the task {G} is completed?” Without chain-
of-claims reasoning, the reasoner directly receives the raw observations from both the policy and
evaluator agents, without structured analysis.

Table] demonstrates the contribution of each design component in PRORE. Without explicit guid-
ance from the reasoner, evaluator agents navigate with probing tasks generated with simple rules,
which provides marginal improvement. When the reasoner schedules probing tasks for evaluator
agents, the accuracy increases substantially to 91.4%, underscoring the effectiveness of separating
reasoning and planning (by the reasoner) from execution (by the evaluators). In addition, incorpo-
rating chain-of-claims reasoning further improves accuracy by 1.7%, highlighting the importance of
summarizing low-level GUI details from trajectories and analyzing the relationships between policy
and evaluator claims. Finally, iterative state probing in PRORE boosts performance to 94.8%, as ad-
ditional probing and refinement yields more complete observations of key states. Besides, without
the claim filter, we observe a 1.7% reward accuracy drop on AndroidWorld benchmark, underscoring
the necessity of eliminating irrelevant or misleading claims prior to the chain-of-claims.

Figure [/] further illustrates the benefits of parallel and iterative state probing, especially on more
challenging tasks. Notably, parallel state probing yields larger performance gains compared with
iterative probing. A possible explanation is that the reasoner, lacking domain-specific GUI knowl-
edge, is less effective at leveraging the intermediate observations and action histories provided by
the evaluator agents to refine subsequent probing tasks.

Different Reasoners. We further vary the reasoners in PRORE. Table [5] shows that reasoners
equipped with built-in chain-of-thought capabilities are more effective at analyzing the relationships
between policy and evaluator claims, leading to higher reward accuracy and F1 scores.

Published as a conference paper at ICLR 2026

Different Evaluator Agents. We further investigate the impact of evaluator agent capability. Pol-
icy SR denotes the task success rate of an agent when deployed as a policy. As shown in Table [6]
stronger evaluator agents are able to probe key states from the environment more effectively, thereby
achieving higher reward accuracy. Moreover, fine-tuned small GUI agents can outperform large gen-
eralist agentic systems when used as evaluators, owing to their domain-specific GUI knowledge. We
also notice that Qwen3-VL-4B yields notably lower reward accuracy compared with larger models.
We hypothesize that this drop stems from the smaller models’ weaker ability to generalize to unseen
probing tasks and identify key observations even with high-quality probing instructions.

Overhead Analysis. The total cost of PRORE is approximately $0.06 per agent task. Among the
components, state probing task scheduling and chain-of-claims contribute about $0.013 and $0.050,
respectively. Removing redundant information from trajectories can reduce input tokens by about
25.9% without degrading performance. Overall, PRORE remains significantly more cost-efficient
and scalable compared to hiring human annotators. We further provide a detailed per-task cost
comparison and long-term cost estimation between PRORE and the baselines in Appendix [

5 DISCUSSIONS

Online RL with PRORE. Prior work has shown that online reinforcement learning (RL) can achieve
substantially better performance when guided by accurate reward signals|Qi et al.|(2024); Wang et al.
(2024c). After policy agents execute actions in an online RL setting, PRORE can be seamlessly
integrated to provide more precise reward assignments with only moderate overhead. Nevertheless,
we defer a full exploration of online RL with PRORE to future work.

Co-evolution of Policy and Evaluator Agents. In PRORE, the policy agent and the evaluator agent
can be instantiated from the same underlying model, creating a unique opportunity for co-evolution.
Stronger evaluator agents enhance reward accuracy, which in turn improves the policy agent’s suc-
cess rate. As the policy agent becomes stronger through test-time scaling or training, it enables the
evaluator to achieve higher success on state probing tasks and further improve reward accuracy. This
mutual reinforcement establishes a virtuous cycle between policy and evaluator agents.

6 CONCLUSIONS

Unlike existing trajectory-based LLM-as-a-Judge approaches, PRORE introduces a proactive reward
system for GUI agents that integrates a general-purpose reasoner with domain-specific evaluator
agents. The evaluator agents proactively probe key states based on probing tasks scheduled by the
reasoner, while the reasoner make final judgments based on the chain-of-claims from the evaluator
agents. Extensive experiments across diverse tasks, applications, and agents demonstrate the effec-
tiveness of PRORE, as well as its effectiveness in guiding the test-time scaling of policy agents.

ACKNOWLEDGEMENTS

This research is partially supported by Singapore Ministry of Education under its AcRF Tier 1 grant
RT14/22, the Global STEM Professorship Scheme of Hong Kong, the HKUST start up grant, and
the Research Grants Council (RGC) General Research Fund (GRF) 16210425.

REFERENCES

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461-12495, 2024.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Justin
Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent arena:
Evaluating multi-modal os agents at scale. September 2024.

Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu. Ad-
vancing mobile gui agents: A verifier-driven approach to practical deployment. arXiv preprint
arXiv:2503.15937, 2025.

10

Published as a conference paper at ICLR 2026

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev, Botao
Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, et al. Mind2web 2: Evaluating agentic search with
agent-as-a-judge. arXiv preprint arXiv:2506.21506, 2025.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong
Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, et al. Ui-venus technical report: Building
high-performance ui agents with rft. arXiv preprint arXiv:2508.10833, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiyuan Hu, Shiyun Xiong, Yifan Zhang, See-Kiong Ng, Anh Tuan Luu, Bo An, Shuicheng Yan,
and Bryan Hooi. Guiding vlm agents with process rewards at inference time for gui navigation.
arXiv preprint arXiv:2504.16073, 2025.

Hanyu Lai, Junjie Gao, Xiao Liu, Yifan Xu, Shudan Zhang, Yuxiao Dong, and Jie Tang. Androidgen:
Building an android language agent under data scarcity. arXiv preprint arXiv:2504.19298, 2025a.

Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
for computer use agents. arXiv preprint arXiv:2508.14040, 2025b.

Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuy-
ing Peng, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous
mobile operation. arXiv preprint arXiv:2507.16853, 2025.

Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
self-play framework for code and test generation. arXiv preprint arXiv:2502.14948, 2025.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-rl: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025a.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025b.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-rl: A generalist rl-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
lum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

11

Published as a conference paper at ICLR 2026

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 1, 2025.

Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge &
reward model: What they can and cannot do. arXiv preprint arXiv:2409.11239, 2024.

Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
Wengi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g ?: Gaussian reward modeling for gui
grounding. arXiv preprint arXiv:2507.15846, 2025a.

Liang Tang, Shuxian Li, Yuhao Cheng, Yukang Huo, Zhepeng Wang, Yiqiang Yan, Kaer Huang,
Yanzhe Jing, and Tiaonan Duan. Sea: Self-evolution agent with step-wise reward for computer
use. arXiv preprint arXiv:2508.04037, 2025b.

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025.

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile 1lm
agents. arXiv preprint arXiv:2406.08184, 2024a.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Bench-
mark self-evolving: A multi-agent framework for dynamic 1lm evaluation. arXiv preprint
arXiv:2402.11443, 2024b.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asyn-
chronous distributed reinforcement learning framework for on-device control agents. arXiv
preprint arXiv:2410.14803, 2024c.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Wei Xiong, Wenting Zhao, Weizhe Yuan, Olga Golovneva, Tong Zhang, Jason Weston, and Sain-
bayar Sukhbaatar. Stepwiser: Stepwise generative judges for wiser reasoning. arXiv preprint
arXiv:2508.19229, 2025.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android au-
tonomous agents. arXiv preprint arXiv:2410.24024, 2024.

Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting
Wang, Wenyi Zhao, and Yuxiao Dong. Mobilerl: Online agentic reinforcement learning for
mobile gui agents, 2025. URL https://arxiv.org/abs/2509.18119,

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Fangyi Yu. When ais judge ais: The rise of agent-as-a-judge evaluation for llms. arXiv preprint
arXiv:2508.02994, 2025.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-
a-judge: Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

This work studies rewarding LLM-based GUI agents with a proactive reward system. LLMs were
involved in three aspects of our research: (i) serving as the backbone for the GUI agent and baseline
implementations, (ii) supporting framework design, and (iii) assisting with polishing the writing of
the manuscript. All research ideas, contributions and evaluations were developed and validated by
the authors. No LLM is considered an author.

12

https://arxiv.org/abs/2509.18119

Published as a conference paper at ICLR 2026

B TEST-TIME SCALING FOR POLICY AGENTS

B.1 PRroOOF oF LEMMA[I

We define fest-time scaling as the procedure where a policy agent is rolled out on a given task with
a maximum trial budget N. After each trial, a reward method evaluates the trajectory produced
by the policy agent. If the reward method determines the trajectory to be successful, the process
terminates early and the corresponding trial is submitted as the final output. Otherwise, the policy
agent continues to the next trial, until either a successful trajectory is identified or the trial budget
N is exhausted. If no positive judgment is given within N trials, the final trial is submitted as the
output.

Lemma 1 (Restated). Let the success rate of the policy agent be p, and the reward accuracy be p.
Then, under test-time scaling with trial budget N, the final success rate Ppnq satisfies

PaDec

Pfinal = [1- 1 —q)V] +pa(1—q), whereq=pape+ (1 —pa)(1—pe).

In particular, given p, > 0, Pgina1 monotonically increases with respect to p. whenever p. > 0.5.

Proof. In each trial, the policy agent succeeds with probability p,. The reward model outputs a
positive judgment with probability

g = Pr(TP) +Pr(FP) = pap. + (1 —pa)(1 — pe).
where TP and FP refers to true positives and false positives.

(i) Formula. The probability that at least one positive reward appears is 1 — (1 — ¢)V. Given a
positive reward, the probability that the trajectory corresponds to a truly successful one is

Pr(TP Do
Pr(success | positive) = Pr(;(gsitile) = pqp .

Hence when there is at least one positive reward in the N trials, the success probability is % [1-—
N

(1—-q)"].

If no positive reward appears, the last submitted trial is an unfiltered trial whose success probability

is pg. Summing the two cases yields

DPaDec
Pfinal - T [1 - (1 - q)N] +pa(1 - q)N

(ii) Monotonicity in p. for p. > %. When p, > 1, a positive reward is more likely to be a true
success than a failure. Increasing p. simultaneously increases the true positive rate among judged
positives and decreases false positives, thereby making the first positive more likely to be a true
success. Formally, differentiating Py;,,q; with respect to p. shows 0Pf;nq/0p. > 0 whenever
Pe > 0 and p. > % (details omitted for brevity). Thus Pf;,,; monotonically increases in p. on

(3.1]. O

Implications of Test-time Scaling of GUI Agents. Test-time scaling of GUI agents is closely con-
nected to both the exploration capabilities of GUI agents on applications and tasks, as well as their
training efficiency. On complex out-of-domain tasks, a GUI agent may actively explore applications,
accumulate experience, and iteratively refine its trajectories to achieve the task instructions. During
training, more effective rollouts enabled by test-time scaling can generate larger-scale datasets with
higher quality, while keeping the overall budget fixed.

B.2 LARGE-SCALE SIMULATION ANALYSIS.
To further study the impact of the reward accuracy on the performance of policy agent during test-

time scaling, we conduct large scale simulation for different P, and P, based on Lemma[I} The
simulation is repeated for SOK times and the average results are reported in Figure.

13

Published as a conference paper at ICLR 2026

L0 @ 1.0 T | e
0.9 Z0.9 0.8 0.4
gos %os g £
Lo. 0. 3 02 §
& g £os o
go7 g 07 g 00 g
O © 2
506 006 E 04 -028

¢ H g
0.5 / — pc=0.6 0 0.5 —— p,=0.30 Pa=0.60 <
/’- pe=07 —— pc=0.95 S Pa=040 —a— p,=070 0.2 —04
0.4 pc=08 Pc=0.99 V.4 Pa=0.50 Pa=0.80 os
5 10 15 0.6 0.7 0.8 0.9 1.0 02 04 06 08 :
Trial Budget Reward accuracy pc Policy success rate p,
(@) (b) (©

Figure 8: Simulation for test-time scaling of Policy Agents. (a) The success rate of a policy agent
increases steadily as the trial budget grows. (b) The final success rate pf;,,; monotonically improves
with higher reward accuracy across different policy agents, highlighting the importance of reliable
evaluation. (c) Reward accuracy contributes the largest absolute success rate (SR) gain for policy
agents with moderate baseline SR (0.2-0.6).

As shown in Figure [8] when the reward accuracy is greater than 50%, a higher reward accuracy
consistently leads to a higher success rate of the policy agent, since additional rollouts increase
the likelihood of discovering a successful trajectory. We also observe that in most cases pfinais
indicating the upper capability boundary of the policy agent and underscoring the importance of
continuously improving the decision-making ability of GUI agents. The results on realistic tasks
and applications in Figure [] exhibit a similar trend, further highlighting the importance of reward
quality in boosting performance.

C STATE PROBING TASKS EXAMPLES

We further provide illustrative examples of the scheduled state probing tasks in Table /| Compared
to the original tasks, these probing tasks are generally easier (shown in Table[)), as they only require
the evaluator agent to navigate to the relevant UI page without performing content editing or modi-
fication. When necessary, the general-purpose LLM reasoner further decomposes probing tasks into
subtasks for the evaluator agent, thereby reducing their difficulty. Moreover, the evaluator agents ex-
ecute based on the prior interactions of the policy agent, which helps to further mitigate navigation
challenges.

Table 7: Examples for the original tasks and the corresponding probing tasks

Original Task Generated Probing Tasks

Open the file task.html in Downloads in the file ~What is the value in the input field on the
manager; when prompted open it with Chrome. task.html page in Chrome?

Then click the button 5 times, remember the

numbers displayed, and enter their product in

the form.

Take one photo. Find the most recently taken photo in the
gallery.

Create a timer with 0 hours, 16 minutes, and 35 Confirm the timer is set to 16 minutes and 35

seconds. Do not start the timer. seconds and is not running.

Create a new contact for Hugo Pereira. Their ~What is the phone number for the contact Hugo

number is +13920741751. Pereira?

Add the expenses from expenses.jpg in Simple Show the expenses from expenses.jpg in the

Gallery Pro to pro expense. pro expense app.

Go through the transactions in my_expenses.txt ~ What are the logged transactions in the pro ex-
in Markor. Log the reimbursable transactions pense file in Markor?
in the pro expense.

14

Published as a conference paper at ICLR 2026

Delete all but one of any expenses in pro ex-
pense that are exact duplicates, ensuring at
least one instance of each unique expense re-
mains.

Verify the pro expense list contains no dupli-
cate entries.

Delete the following expenses from pro ex-
pense: Rental Income.

Find the “Rental Income” expense in the pro
expense app.

Delete the file q2a8_fancy_banana.mp3 from
the Android filesystem located in the Notifi-
cations folder within the sdk_gphone_x86_64
storage area.

Check the Notifications folder for the file
q2a8_fancy_banana.mp3.

Move the file holiday_photos.jpg from Pod-
casts within the sdk_gphone x86_64 stor-
age area to the DCIM within the same
sdk_gphone x86_64 storage area in the An-
droid filesystem.

Check if holiday_photos.jpg is in the DCIM
folder and not in the Podcasts folder.

Markor note
by adding

Update the
2023_08_10_neat_wolf.txt
the following text, along with a new
blank line before the existing content:
“Rnl8sP34yDzJQbvkfplR”, and rename it to
busy_wolf_2023_07_23.txt.

In Markor, open the note
busy_wolf_2023_07_23.txt and show its
content.

Create a new note in Markor named In Markor, what is the content of the note
2023.01_26_wise_yacht.md with the fol- 2023_01_26_wise_yacht.md?

lowing text: Ignorance is bliss.

Merge the contents of Markor What are the contents of the Markor note
notes tough_frog_2023_08_05.txt, mIObBbo4?

proud_cat_edited.txt and

2023_08_21 _friendly_koala.md (in the same or-
der) into a new Markor note named mIObBbo4
and save it. Add a new line between the
content of each note.

In Markor, move the note shy king_copy.md
from StudyGuides to MeetingMinutes.

Find the note shy_king_copy.md in the Meet-
ingMinutes folder.

Is the note titled ‘To-Do List’ in the Joplin app
marked as a todo item? Respond with either
"True’ if it is a todo or "False’ if not.

Check the to-do status of the ‘To-Do List’ note
in Joplin.

What quantity of spirulina do I need for the
recipe ‘Chicken Alfredo’ in the Joplin app?
Express your answer in the format amount unit
where both the amount and unit exactly match
the format in the recipe.

What is the quantity of spirulina in the Joplin
recipe ‘Chicken Alfredo’?

Open the contacts app. Clear any pop-ups that
may appear by granting all permissions that are
required.

Verify the contacts app is open and no permis-
sion pop-ups are visible.

Add a favorite location marker for 47.1303814,
9.5930117 in the OsmAnd maps app.

Find the favorite location marker for

47.1303814, 9.5930117 in My Places.

Add a location marker for Planken, Liechten-
stein in the OsmAnd maps app.

Find the map marker for Planken, Liechten-
stein.

Add the recipes from recipes.jpg in Simple
Gallery Pro to the Broccoli recipe app.

Confirm recipes from recipes.jpg are in the
Broccoli app.

15

Published as a conference paper at ICLR 2026

D ADDITIONAL EXAMPLES

We further include additional illustrative examples in Figure[9] Figure [I0} Figure[IT] and Figure[12]
to demonstrate the limitations of LLM-as-a-judge and the effectiveness of PRORE.

The primary limitations of trajectory-based LLM-as-a-judge approaches for GUI agents are: i) In-
complete state observations of the environment, which hinder accurate reasoning and judgment;
and ii) Lack of GUI domain expertise, making it difficult for LLMs to interpret complex Ul-related
details and the Ul logic.

Incomplete State Observations. Figure[9] Figure[TT] and Figure[T2]illustrate that the policy agents
only observe a partial view of the environment due to the limited UI elements visible on screen and
the APPs design. As a result, the trajectories miss critical information necessary for determining
task success or failure. For example, in Figure[T1] the policy agent’s observation includes only part
of the event names, which leads to an incorrect answer.

Lack of GUI Domain Expertise. Figure [T0] shows that the policy agent chooses to turn on Blue-
tooth by clicking the Pair new device button. However, the reasoner lacks the GUI-specific
knowledge to recognize that this action implicitly triggers the activation of Bluetooth, and therefore
fails to make the correct judgment.

Both limitations have been widely observed in different kinds of applications and tasks. To handle
both problems, PRORE proactive probe states with the collaboration between the general reasoner
and the domain-specific evaluator agents. Those examples highlight the effectiveness of the probed
states on making the correct judgement on the policy agents executions.

E PROMPTS OF PRORE

For reproducibility, we provide the prompts used in our experiments, covering probing task schedul-
ing, claim generation, and the final judgment with chain-of-claims. During state probing, the Eval-
uator Agent is invoked with the original prompt format from prior works, but conditioned on the
specific evaluation goal.

E.1 PROBING TASKS SCHEDULING

You are an expert in mobile-UI task verification.
There are two agents:
— The Policy Agent already attempted the task.

Policy Trajectories

Probed States

Py wzo . I o 2010 v
°mw “ | @ <@:
'
' &
7 o ! |®
I
314 ¢
a om| °
po " ' .
a :
'
I
° !
'
-] '
o H
! Evaluator Claims:
o ' 1) An existing transaction from May 6, 2024, was shown instead of
* Cryptocoins H the target date of March 8, 2024.
) ! >
A = i 2) The updated income entry was left unsaved.
Colendar H
H Policy Claims:
;. ! 1) entered an income of 3.14 with the note 'Weixin red packet'.
C i | 2) changed the transaction date to "March 8, 2024,
2 a : 3) saved the new income transaction.
'
N
! ProRe: Policy Claim 3 "The agent saved the new income
LLM judge: the agent allthe ion" is cor I by Evaluator Claim 2 "The
necessary steps to create and save the entry updated income entry was left unsaved".
Judgement: Success Judgement: Failure

Figure 9: Additional examples. The task is "Switch the May 13, 2024, transaction from ’expense’ to
‘income’ and add ’Gift’ as the note in Bluecoins.”

16

Published as a conference paper at ICLR 2026

Policy Trajectories Probed States
® ®
@"QS @new device @3 €
Q Search settings T @ Search settings B e o, €D

= Network & internet

@ Cometeddeices on . O oz

= Awps @

o Noticaions Connected devices 1) The Bluetooth setting is enabled.
4 Pairnewdevice

o Batlery o

Policy Claims:
1) the agent i to the 'C
devices' screen.

2) The agent selects the 'Pair new device' option.

= Storage

5 Seeall

O SERarn Comectonpefrences

LLM-as-a-judge: The screenshot does not explicitly
confirm that the Bluetooth state has been changed to "on".
Judgement: Failure

ProRe: The Evaluator Agent confirmed that the Bluetooth
setting was indeed in the 'on’ state.
Judgement: Success

'
I
I
'
|
|
|
|
I
|
I
I
|
|
|
|
I
|
I
I
H Evaluator Claims:
|
|
I
I
I
I
|
|
|
|
|
I
I
I
|
|
|
|
|
I
|

Figure 10: Additional examples. The task is ”Turn bluetooth on.”

Probed States

o acoo avoo xeo0 w.

Policy Trajectories

October 28 (Sat) >

<
' Game night

Product demo

' Date night

Evaluator Claim: The calendar for
October 28 contains three events
titled: Game night, Product demo,
and Date night.

Policy Claim: The agent identified
the event titles for October 28
"Game night, Product, Date night"
from the initial screen and provided
them as the answer.

LLM-as-a-judge: On October 28th, the events ProRe: The Policy Agent provided
are "Game nig", "Product", and "Date night". anincomplete and incorrect title
Judgement: Success ° for one of the events

Judgement: Failure

Figure 11: Additional examples. The task is "Do I have any events October 28 in Simple Calendar
Pro? Answer with the titles only. If there are multiples titles, format your answer in a comma
separated list.”

LLM-as-a-judge: The screenshot shows the "All ProRe: The Policy Agent claims to have removed
recipes" list, but both instances of "Chicken Alfredo duplicate recipes, and the Evaluator's observation of the
Pasta" have been deleted, which fails to meet the final state provides direct confirmation that the task's
requirement of leaving one instance of the recipe. ' goal was achieved.

Judgement: Failure Judgement: Success

'
. . . '
Policy Trajectories ' Probed States
—
! - | | Evaluator Claim:
Classic Marghertta Pizza | The final recipe list does not
' Chicken Alfredo Pasta X N .
' \0, contain any duplicate recipes.
'
Chicken Alfredo Pasta g i : Classic Margherita Pizza
o icken Alf e | o i ita P
8 ' 4
'
Pan-Seared Salmon with ! Policy Claims:
Classic Margherita Pizza 8 : e Greek Salad Pita Pocets 1) The agent opened the
! Broccoli app and observed two
o Turkey and Cheese Panini ' Pan-Seared Salmon with duplicate "Chicken Alfredo
< ' g Qunen Pasta" recipes.
' 2) The agent successfully
o T oS ! o Turmcieseran | | deleted one of the two
v ! A4 duplicate "Chicken Alfredo
H Vegetable St Fry w.b Pasta” recipes.
0| |g ™
'
'
'
'
'
'
'

Figure 12: Additional examples. The task is "Delete all but one of any recipes in the Broccoli app
that are exact duplicates, ensuring at least one instance of each unique recipe remains”

17

Published as a conference paper at ICLR 2026

- The Evaluator Agent ONLY navigates the UI to probe states about
whether the task was or wasn’t completed. It does NOT repeat
the task; it just locates additional proof (screens, labels,
icons) .

Your job:

1. Write some analysis explaining what UI evidence/states would
confirm the task is done.

2. Output ONE concise goal (<= 20 words) that tells the evaluator
agent exactly what states to look for.

3. When the original task involves multiple key states, you may
decompose the verification into a sequence of probing goals,
with each goal focusing on a specific state.

The goal must sound like the examples below, short, direct, and in
the same tone.

Style Examples

"What is the cheapest flight from Los Angeles to Tokyo using
Skyscanner?"

"What are the 1M to 3M GBP to EUR exchange rates?"

"go to settings and make weeks start on Monday in simple calendar"

"Mark Hamlet as read in Cantook."

Your turn
Original task: {goal}

A previous state probing task was:
{previous_state_probing_task}

The Evaluator Agent probed the following states:
{collected_info}

Revise the probing task based on the previous probing task and the

original task:

Respond exactly as:

Analysis: <outline the users expectations and exact UI evidence
needed, pinpoint why the earlier collection failed, and
suggest how to refine the evaluation goal for comprehensive
verification>

Goal: <revised concise goal>

Do not add anything else.

E.2 CHAIMS GENERATIONS

You are an expert in evaluating the performance of a mobile GUI
agent.

x**Workflow overview: *x*

1. xxUser** provides a task intent.

2. The xxPolicy Agentx* executes UI actions to fulfil that task;
its steps are recorded as *Action History=x.

3. The **Evaluator Agent** runs after the Policy Agent has
finished, and proactively interact with the environment to
gather additional observations.

4. xxYouxx will now produce concise **claims*x for the
x**x{role.capitalize ()} Agentx** only.

You must follow a step-by-step analysis:

18

Published as a conference paper at ICLR 2026

1. Read the xxTask Goalxx and the {role.capitalize()} Agent’s
action history (if available).

2. Examine the provided {role.capitalize()} screens (HTML +
screenshots are attached in order).

3. Synthesize related observations into claims. Each claim must:
— List the supporting step indices.

- Give a brief, evidence-grounded rationale.
- State a concise, goal-relevant claim.

4. Include any details critical to the final judgment directly in
the claims (e.g., specific titles, timestamps, targets,
confirmations, error messages) .

6. Do **notx* judge final success/failure here; only produce
claims.

—————— INPUTS —————-
TASK GOAL:
{intent}

ACTION HISTORY ({role.capitalize ()} Agent):
{action_history if action_history else "[No action history
provided] "}

HTML STATES (TRACE of {role.capitalize ()} Agent):
{html_text_block}

—————— OUTPUT GUIDELINES —————-—
{guidelines}

777777 OUTPUT SCHEMA —--—--—-

"{role_key}": [
{{
"steps": [<list of step numbers>],
"reasoning": "<brief explanation of why this claim is
Justified>",
"claim": "<concise, goal-relevant claim>"

Iy

]
H}

Return only the JSON under **Claims:*x*

Guidelines for Policy Agent to write claims:

xGuidelines for writing claims (Policy Agent) :xx

Core Mandate: The Actor’s Report

— Think of yourself as the agent actively performing the task.
Your claims are a direct report of your own actions and their
immediate results.

- Your goal is to narrate your journey through the task, focusing
only on the steps you took and the UI states you directly
observed or caused.

- Be concise, factual, and strictly focused on the task goal.
Avoid speculation or opinions about why something happened.

Claim Generation Rules:
— Aim for {min_claims}-{max_claims} claims total.

19

Published as a conference paper at ICLR 2026

- *«xFor Tasks Involving Information Sources (e.g., "from an

image," "using the details in the file") :xx%

— *%x1. Access the Source:*x Generate a claim confirming you
x*xaccessed and viewed the specified information sourcexx.

- xExample:x "The agent opened ‘expenses.jpg' in the gallery
to view the expense details.”

— %%x2. Confirm Data Match:**x In the claim about entering the
data, explicitly state that the xxdata entered matches the
data from the sourcexx.

- xExample:x "The two expenses entered, ’'Office Supplies for
150’ and '"Travel Expenses for 200’, match the content of
‘expenses.jpg‘."

- *xFor Editing, Modifying, or Deletion Tasks:x=*

— *x%x1. Capture the ’'Before’ State:xx First, generate a claim
that xxdescribes the initial state of the item BEFORE the
modificationxx.

- xExample:x "Before editing, the contact’s phone number was
"555-123-4567"."

— *%x2. Report the "After’ State:x* Then, generate a separate
claim describing the xxsuccessful modification or
deletionx*x.

- *xExample:x "The contact’s phone number was successfully
updated to ’555-987-6543"."

— xxReport All Critical Actions:xx

— Describe your key actions and their direct consequences using

state/action phrasing (e.g., "Recording saved and appears

in list").
— Highlight any mismatches, errors, or unintended actions you
performed (e.g., "Opened the wrong menu," "A ’'Permission

Denied’ error appeared").
- xxBe Efficient and Relevant:xx

— Merge duplicate claims that describe the same state.

— Ignore trivial system indicators (battery, clock, signal),
home/launcher screens, and redundant repeated actions
unless they are evidence of an error or loop.

- Output must be valid JSON following the schema below.

Guidelines for the Evaluator Agent to write claims.

xGuidelines for writing claims (Evaluator Agent) :xx

Core Mandate: The Detective Analogy

— Think of yourself as a detective arriving at a scene xafterx
the suspect (the Policy Agent) has left.

— The action history and screenshots you see are your own
investigation, using your ’'magnifying glass’ and ’tools’ to
inspect the scene.

— Your goal is to make claims about the state of the scene *xas
the Policy Agent left itxx.

— xxYou must NEVER create a claim about your own investigative
actions.*xx For example, if you tap ’'Save’ or ’'Delete’ to
check a confirmation dialog, you must not claim "The agent
saved the file" or "The agent deleted the item." Your actions
are not part of the evaluated task.

Claim Generation Rules:
— Aim for {min_claims}-{max_claims} claims total.

20

Published as a conference paper at ICLR 2026

— xxFocus on the evidence:xx All claims must describe the final
state resulting from the Policy Agent’s work, using your
observations as proof.

- *xBe factual and concise:*xx Merge duplicates and report on what
is present or missing. Avoid speculation.

— xxIdentify mismatches:** If your investigation reveals that the
final state contradicts the task goal (e.g., wrong file type,
incorrect note name, content not saved, settings not
changed), these are critical claims to include.

- *xIgnore trivial states:*x Do not report on system indicators
(battery, clock), home screens, or app launchers unless
directly relevant to the task goal.

- **Phrase claims effectively:+xx Prefer state/action summaries
(e.g., "Recording saved and appears in list") over simple
lists of UI elements.

- Output must be valid JSON following the schema below.

E.3 JUDGE WITH CHAIN-OF-CLAIMS

You are an expert judge evaluating whether a mobile GUI agent
(Policy Agent) has completed the user’s task.

x+Workflow overview: *x*

1. x*Userxx provides a task intent.

2. The *xPolicy Agentx+* executes UI actions to fulfil that task;
its steps are recorded as xAction Historysx.

3. The xxEvaluator Agent*x runs after the Policy Agent has
finished, and proactively probes the resulting states to
gather additional observations.

4. Your job is to analyze these claims together, identify their
relationships, and determine whether the Policy Agent
successfully completed the task.

You must follow a two-stage analysis:

Stage 1 - Filter Evaluator Claims

— Carefully review the evaluator claims.

— xxDiscard any claim that describes actions or outcomes caused
by the Evaluator Agent itselfxx (e.g., accidental saves,
unintended edits, stray taps/scrolls).

— Keep only evaluator claims that serve as **evidence about the
Policy Agent’s actual outcomex*x.

- If in doubt, prefer to exclude rather than include.

Stage 2 - Compare Policy vs. Evaluator Claims
1. x*Read the Task Goalxx carefully to understand what success
means.
2. xxCompare Policy Claims and (filtered) Evaluator Claimsx*x*:
- Mark as xxconfirmedxx if an evaluator claim supports a
policy claim.
- Mark as xxcontradicted** if an evaluator claim directly
disproves a policy claim.
- Mark as xxcomplementary=** if the evaluator provides
additional relevant evidence.
— Mark as xxunsupportedx* if no evaluator claim addresses a
policy claim.
3. Highlight any **critical confirmations or contradictionsx*x*
that directly determine success.

21

Published as a conference paper at ICLR 2026

4. Decide the outcome reward: did the Policy Agent achieve the
user’s task goal?

**Guidelines: xx*

— Before labeling a contradiction, check if the agents are simply
observing different aspects of the same content (e.g., Policy
saw page 1, Evaluator scrolled to page 2).

- If so, their claims are xxcomplementary=**. Your job is to
x*xsynthesizex* them into a single, more complete
understanding.

— When claims are in direct conflict, act as a critical arbiter
rather than a passive matcher. Evaluate reliability and
consistency; do not assume both sides are equally valid.

— Consider the correctness of the xxtarget** (e.g., the right
file, event, app).

- For question-answer tasks, the Policy Agent must include an
explicit claim stating the answer it provided, expressed
exactly as required by the task.

- Ignore evaluator stray/accidental claims unrelated to the goal.

— If claims indicate progress but also critical issues (wrong
extension, malicious steps), treat as compensated or failure
depending on severity.

—————— INPUTS —————-
TASK GOAL:
{intent}

POLICY CLAIMS:
{policy_claims}

EVALUATOR CLAIMS:
{evaluator_claims}

—————— OUTPUT INSTRUCTIONS —————-
Write your reasoning in two sections:

Analysis:

- Stage 1: List which evaluator claims you discarded and why.

- Stage 2: Compare the remaining evaluator claims against the
policy claims, showing relations (confirmed, contradicted,
complementary, unsupported).

- Explain how these relations support your Jjudgment.

Status: success or failure

Return only these two sections, exactly in this format.

F CoSsT COMPARISON

We further analyze and compare the cost between PRORE and the baselines from per-task cost and
the long-term cost perspective. The per-cost cost comparison is detailed in Table 8]

Table 8: Per-task cost comparison across baselines.

Methods DistRL DigiRL WebRL StepCritic PRORE
Cost($) 0.010 0.014 0.013 0.017 0.063

22

Published as a conference paper at ICLR 2026

While PRORE incurs additional computational overhead, primarily due to proactive probing and
the chain-of-claims mechanism, it achieves significantly higher reward accuracy and F1 scores, as
demonstrated in Table [2]and Figure[d] We believe that enhanced reward accuracy ultimately trans-
lates to greater efficiency when deploying such a reward system. Therefore, we conducted the
additional measurements and analysis.

Firstly, the reward system can be employed to guide test-time scaling of policy agents. As illustrated
in Fig. [6] PRORE facilitates markedly more efficient test-time scaling: the policy agent attains a 63%
success rate with only 2 trials under PRORE, whereas the baseline approaches require at least 5 trials,
resulting in a 2.5x speedup.

Secondly, the reward system can be employed during training to guide the roll-outs of policy agents.
In this setting, the total cost consists of both the rollout cost and the reward evaluation cost. To
quantify this, we estimate the cost of collecting 1,000 correctly identified successful trajectories.

A correctly identified successful trajectory requires both (i) a successful rollout by the policy agent,
and (ii) the evaluator correctly recognizing it as success. Assuming a 60% policy success rate and
using the average accuracies in Table[2](93.7% for PRORE and 88.4% for StepCeritic), the probability
of obtaining one useful trajectory is 0.60 x Acc. Consequently, PRORE requires approximately 1,780
rollouts, whereas StepCritic requires 1,885 rollouts—i.e., StepCritic needs 110 additional rollouts to
achieve the same amount of useful data. The corresponding evaluator costs are $112.1 for PRORE
and $32.1 for StepCritic.

Table 9: Long-term cost comparison (1,000 useful trajectories)

Method Avg Acc (%) Rollouts Rollout Cost Reward Cost Total Cost

PRORE 93.7 1778.7 1636.4 112.1 1748.5
StepCeritic 88.4 1885.4 1734.5 32.1 1766.6
WebRL 86.9 1917.9 1764.5 24.9 1789.4
DistRL 86.1 1935.7 1780.9 19.4 1800.2
DigiRL 84.6 1970.1 1812.5 27.6 1840.0

This leads to the following cost difference:

Costsiepcritic — C'ostprore = 110 X C'ostroliou — 85.6

PRORE becomes more economical once the rollout cost exceeds $0.78. Using Azure A100 pric-
ing (= $3.67 /hour), a typical 72B GUI agent rollout with 30 steps (30 s/step) costs roughly $0.92,
already above this threshold. Thus, under realistic deployment conditions where rollout cost domi-
nates (GPU hosting, LLM inference, environment rendering), PRORE becomes more cost-effective
for large-scale training and evolution, despite its higher per-task evaluation overhead.

Similar deductions apply to all other baselines. Table[9]summarizes the total cost of collecting 1,000
useful trajectories for each method.

23

	Introduction
	Related Works
	General Reward Models in Broader Topics
	GUI Agents for Tasks Automation
	Gaps between General Rewards and Rewards for GUI Agents

	Proactive Reward System with Agent-in-the-loop
	Problem Formulation.
	Framework Overview
	Proactive Agent-in-the-loop Probing
	Outcome Reward with Chain-of-Claims
	Test-time Scaling for States Probing in ProRe

	Evaluation
	Experiment Settings
	Results Comparison
	Ablation Study

	Discussions
	Conclusions
	The Use of Large Language Models (LLMs)
	Test-time Scaling for Policy Agents
	Proof of Lemma 1
	Large-scale Simulation Analysis.

	State Probing Tasks Examples
	Additional Examples
	Prompts of ProRe
	Probing Tasks Scheduling
	Chaims Generations
	Judge with Chain-of-Claims

	Cost Comparison

