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ABSTRACT
Mobile GPU, as the ubiquitous computing hardware on al-
most every smartphone, is being exploited for the deep learn-
ing inference. In this paper, we present our measurements on
the inference performance with mobile GPUs. Our observa-
tions suggest that mobile GPUs are underutilized. We study
the inefficient issue in depth and find that one of root causes
is the improper partition of compute workload. To solve
this, we propose a heuristics-based workload partitioning
approach, considering both performance and overheads on
mobile devices. Evaluation results show that our approach re-
duces the inference latency by up to 32.8% on various devices
and neural networks.
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1 INTRODUCTION
With the rapid growth of AI techniques, intelligent edge
computing is attracting more and more attentions. Mobile
GPUs, for the general availability on mobile devices and
more compute power compared to mobile CPUs, are being
exploited for on-device deep learning (DL) inference.
However, the performance of DL inference on mobile

GPUs is not well studied yet. This paper presents a measure-
ment study which shows the mobile GPU is underutilized.
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We therefore conduct preliminary research to analyze and
solve the issue to improve inference performance on mobile
GPUs.

We first study the hardware utilization of mobile GPUs in
depth. The profiling results show that during the inference
process, although the GPU shader cores are mostly busy,
the arithmetic processing units inside cores are still under-
utilized. Furthermore, we find that the workload partition
plays a critical role in the final performance. However, cur-
rent partition methods used in DL inference frameworks,
such as exhaustive search or look-up table, all have obvious
deficiencies.
Some works have been done for workload partitioning

on server GPUs [8, 9]. Unfortunately, they are inappropriate
for mobile GPUs due to the different hardware features [16,
19] such as resource constraints. To this end, we propose
a heuristics-based workload partitioning approach for DL
inference on mobile GPUs. Based on the hardware and DL-
framework characteristics, we extract several heuristic rules,
which can filter out partitions with poor performance and
keep well-performed partitions.

We implement and integrate the proposed approach with
TensorFlow Lite [6]. The early-stage evaluation shows 11%
inference speedup on average. Particularly, for models de-
signed for mobile devices e.g. MobileNet [11], the improve-
ment is up to 32.8%. Besides, the proposed approach is very
lightweight, which is implemented in less than 100 lines of
code. It may be migrated to other inference engines easily.

2 DL INFERENCE ON MOBILE GPUS
We conduct measurements to study the performance of DL
inference on mobile GPUs, taking the CPU inference perfor-
mance as the comparison.

2.1 Study Setup
We use TensorFlow Lite GPUDelegation (TFLite GPU) [6, 15]
as the inference engine. We choose popular mobile System-
on-Chips (SoC) equipped with dominant mobile GPUs, Arm
Mali and Qualcomm Adreno for our measurements. They
have more than 79% of market share in 2019 [1], and thus we
believe they could represent the performance of mainstream
mobile GPUs. In Table 1, we detail the devices used in our
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Specification Hikey 970 Vivo X30 Google Pixel 3XL Xiaomi Mi 9
SoC Kirin 970 Exynos 980 Snapdragon 845 Snapdragon 855
CPU Cortex A73+A53 Cortex A77+A57 Kryo 385 Kryo 485
GPU Mali-G72 Mali-G76 Adreno 630 Adreno 640

GPU Core Unit 12 5 2 2
GPU Cache Size (KB) 512 256 128 128
Memory Size (MB) 2,048 2,048 1,775 3,752

Memory Bandwidth (GBPS) 18.9 13.2 22.6 25.23
GPU Peak GFLOPS 220.2 174.1 429.1 530.4
CPU Peak GFLOPS 134.4 121.6 146.2 214.8

Table 1: Experimental platforms.

measurements and their specifications. We also profile their
peak compute power based on our real tests.
We consider popular deep neural networks which are

widely deployed on mobile devices. We select 6 networks and
their variants, which are MobileNetsV1 [11], VGG-16/19 [17],
ResNet-101/152 [10], InceptionV3 [18], NASNet [20] and
DenseNet-121/201 [12]. The networks are converted into
TFLite format. We do not apply the quantization and 32-bit
floating point (FP32) arithmetic is used.
We make use of TFLite Benchmark tool1 to profile the

performance. The benchmark tool takes a TFLite model and
initializes the runtime for the CPU or mobile GPU. Then
it automatically generates random inputs and executes re-
peatedly for 100 runs according to our settings. Finally the
aggregated statistics are provided. On each device, we first
run selected networks on the CPU using all of its cores, then
on the mobile GPU. In order to avoid the overheating prob-
lem, we make the device sleep for 30 seconds to cool down
between every subsequent runs.

2.2 Results
Fig. 1 illustrates the averaged inference latency while run-
ning different deep neural networks using mobile GPU and
CPU on each device. Overall, the mobile GPU inference
shows a 1.9× speedup on average, compared to the CPU
inference.

On Adreno GPUs, the performance improvement is quite
notable, which demonstrates up to 3× speedup, as shown in
Fig. 1(a) and Fig. 1(b). However, for small networks, i.e. Mo-
bileNetsV1 and NASNet, the performance speedup degrades
to only 1.5-1.8×.

On Mali GPUs, as illustrated in Fig. 1(c) and Fig. 1(d), the
benefits of using the mobile GPU are fairly limited. For large
networks like VGG-16/19, the mobile GPU inference even
requires higher latency than the inference with CPU.
Summarized in Table 1, the compute power of mobile

GPUs generally is about 2-3× more than CPU. However, our
1https://git.io/JvySS

measurements show that, for most of cases, the performance
of mobile GPU inference cannot achieve the expected perfor-
mance gain. The big gap suggests that the full power of the
mobile GPU is not unleashed. There might exist inefficient
issues with the usage of mobile GPUs.

In addition, the overhead of using mobile GPUs cannot be
neglected. Table 2 summaries the initialization time of TFLite
GPU on each device while running networks above. In the
initialization phase, the inference engine would also involve
kernel compilations and find proper configurations for the
mobile GPU. Shown in Table 2, the initialization surprisingly
spends extremely long time, especially for Mali GPUs, even
up to 20 minutes.

Model Hikey 970 Vivo X30 Google Pixel 3XL Xiaomi Mi 9
VGG19 1,467,829 262,894 10,092 3,693
VGG16 246,950 209,082 10,099 3,944

Resnet-152 90,820 47,266 3,062 1,641
Resnet-101 26,814 32,964 2,107 1,302

MobileNetsV1 11,421 2,708 656 465
InceptionV3 14,637 19,756 1,613 1,039
DenseNet-201 95,764 22,372 1,735 969
DenseNet-121 73,854 17,921 1,081 716

NASNet 9,609 5,685 2,646 1,858

Table 2: Initialization time (ms) on the mobile GPU
of each device while running various deep neural net-
works.

3 UNDERSTANDING THE
UNDER-UTILIZATION OF MOBILE GPU

To tackle the inefficient issue of mobile GPU, we perform
in-depth measurements and try to identify the root cause.
Before getting to the study details, we briefly introduce some
background on mobile GPU.

3.1 Background
Fig. 2 illustrates a high-level view of the mobile GPU ar-
chitecture. There are only one or a few identical shader
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Figure 1: Inference latency using mobile CPU and GPU on each device for various deep neural networks.
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Figure 2: High-level view of mobile GPU architecture.

cores, which are designed to execute both graphics render-
ing and compute workloads. A shader core consists of fixed
function units such as texture and varying units, as well as
programmable ones, i.e. arithmetic processing units (APU),
which are used for DL inference.

A mobile GPU normally maintains a pair of task queues,
one for graphics rendering tasks and the other for compute
tasks. A scheduler fetches tasks from each queue, breaks into
chunks with proper sizes and distributes across shader cores.
The scheduling strategy is usually implemented differently.
For instance, First-In-First-Out (FIFO) policy is applied in
some Adreno GPUs [13].

A DL inference engine, like TFLite GPU, often wraps each
operator of neural networks as a compute task via program-
ming libraries such as OpenGL ES [2], OpenCL [7] or Ren-
derscript [3]. The task then is executed by multiple parallel
threads on the mobile GPU. Every thread runs the same rou-
tine, but on different regions of the workload, which is called
a work item. Several work items can be further organized
into a work group. The shape and size of the work group
is called work group size. Each work group is assigned to a
particular shader core for execution by the scheduler.
Work items of a work group are executed by function

units in parallel. Inside one core, work items can easily share

data and states. But inter work group communications are
not direct, which bring higher latency. On the other hand,
the function units inside a core are limited. Therefore, it is
essential to organize proper work items into one core to
reduce messaging overheads.

In addition, due to strict chip area and power restrictions,
mobile GPUs are much more resources constrained com-
pared to server GPUs. For example, NVIDIA Tesla V100 GPU
has 6M L2 cache, 900 GB/s global memory bandwidth as well
as large register files and shared memory on chip [14]. By
comparison, as shown in Table 1, Adreno 630 on a Google
Pixel 3XL only has 128 KB L2 cache and 22.6 GB/s memory
bandwidth. Besides, as illustrated in Fig. 2, the memory on
mobile devices is shared among GPU, CPU or NPU. Thus,
proper workload partition is particularly important for mo-
bile GPUs to reduce memory accesses and improve perfor-
mance.

3.2 Identifying Root Cause
To deepen understandings on the inefficient issue discussed
in §2, we measure the mobile GPU performance metrics in-
depth. The metrics we observe are the utilization of shader
core, memory bandwidth and APUs. We make use of Stream-
line [5] and Snapdragon Profiler [4] to collect these metrics
on Hikey 970 and Google Pixel 3XL for Mali and Adreno
GPUs, respectively.
First, we measure the utilization of shade core, by the

proportion of average shade core active cycles in total GPU
active cycles. As shown in Fig. 3, when models are running,
shader cores are often busy. The averaged utilization is 91.2%
on Adreno and 89.8% on Mali GPUs. It suggests that compute
workload have been well distributed across all share cores.

Then, we measure the memory bandwidth utilization. Il-
lustrated in Fig. 3, the bandwidth is mostly surplus. For large
networks such as VGG-16/19, the utilization is about 21%
on Mali and 49% on Adreno. The utilization gets even lower
for small networks, i.e. MobileNetsV1. On tested devices our
observation suggests that the memory bandwidth limitation
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Figure 3: In-depth performancemetricswhile running
various deep neural networks onHikey 970 (Mali) and
Google Pixel 3XL (Adreno).

is not the root cause of the inefficient issue for the selected
neural networks.

We next measure the APUs inside shader cores. We count
the proportion of average active cycles of APUs in total active
cycles of a shader core as the APU utilization. Shown in Fig. 3,
we notice although shader cores are often busy, APUs inside
cores still are underutilized. On Mali the average utilization
is 54.3%. On Adreno the average APU utilization is around
32%, which is even lower.

Work items are executed by APUs inside a shader core in
parallel. Ideally shader core should spend as much time as
possible on computing, which leads to the high APU utiliza-
tion. But some of APUs might be bounded by cache misses.
Then the external memory access would keep APUs waiting,
which leads to the low APU utilization. To avoid this issue,
we could organize work items that access neighboring data
together with the proper size and assign to one shader core.
Meanwhile there are several cores on the mobile GPU. There-
fore, in order to keep the high utilization inside cores and
across cores, a proper work group size should be selected.

Thus, we further study how work group sizes impact the
utilization of APUs and the inference latency. To facilitate
understanding, we break down the neural network into op-
erators and execute the single operator on both the Adreno
and Mali GPU. We pick the typical operator convolution
(Conv), since Conv is considered as one of the most time-
consuming operators. We select 3×3 as the kernel size, and
set 56×56×256 as the input shape, which is a common Conv
shape shared across various networks [10, 17]. We enumer-
ate all possible work group sizes and then execute Conv
with them. The inference latency and the APU utilization
are collected.
For each device we select 10 work group sizes and their

corresponding results to showcase. Illustrated in Fig. 4, we
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Figure 4: APU utilization and inference latency on
Hikey 970 (Mali) and Google Pixel 3XL (Adreno) while
running Conv with different work group sizes.

observe that different work group sizes have significant im-
pacts on the APU utilization on both Adreno and Mali GPUs.
The inference latency is also closely correlated with the uti-
lization. The higher utilization leads to the lower latency.
More specifically, on the Mali GPU, compared with a non-
optimal work group size (1-3-61), a finest one (8-4-3) can
bring up to 7.1 times improvement in the utilization of APUs.
Meanwhile the inference speedup onMali is about 8.02 times.
On the Adreno GPU, the improvement in the utilization is
about 1.8×, which makes the inference gets 3.58× faster.
We also conduct the experiments above on other devices

listed in Table 1. We obtain similar results. To summarize our
study, we find when running various deep neural networks,
although mobile GPU shader cores are often busy, APUs
inside cores are still underutilized. It in turn leads to the
inefficient issue. To cope with it, a proper work group size
should be selected carefully.

4 WORK GROUP SIZE SELECTION ON
MOBILE GPUS

Selecting the optimal work group size on GPUs is not new.
Some works have been done on server GPUs but are in-
appropriate for mobile GPUs, which are either too heavy
for mobile devices or not efficient enough (detailed in §5).
To this end, we propose a heuristics-based workload parti-
tion approach, considering both inference performance and
overheads. Based on heuristics from hardware and DL char-
acteristics, we propose several rules that can guide us to find
out the optimal work group sizes fully utilizing the mobile
GPU.

4.1 Heuristics-based Workload Partition
First, we introduce our observations on hardware and DL
characteristics. Fig. 5 shows the latency distribution of all
work group sizes from the Conv and depth-wise convolution
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(a) Conv on Mali.
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(b) Conv on Adreno.
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(c) Dw-Conv on Mali.
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(d) Dw-Conv on Adreno.

Figure 5: The latency distribution of Conv and Dw-Conv using all possible work group sizes on Hikey 970 (Mali)
and Google Pixel 3XL (Adreno); input shapes are 56×56×256 for Conv and 56×56×128 for Dw-Conv; kernel size is
3×3.

(Dw-Conv) on the Mali GPU and Adreno GPU. The shapes
are selected from VGG-16/19 and Inception V3 [17, 18], etc.
Overall, the latency follows the Gaussian andmixedGaussian
distribution, but the distributions are quite different across
operators and devices. The observation suggests the specific
rules should be designed accordingly.

From the distributions, we also observe there are still many
work group sizes having the similar performance with the
best. For instance, if a candidate’s latency is closed to the best
within 15%, we call it is a competitive candidate. We find that
69.4% of work group sizes are competitive on Mali, while
around 30% on Adreno for Dw-Conv. For Conv, there are also
about 9% competitive candidates. Based on this observation,
instead of finding the best work group size, we could select
from competitive candidates at a low cost. Next, we discuss
the heuristic rules to guide to select.
Given an operator of the neural network, we notate its

output shape as (𝑥 ′, 𝑦 ′, 𝑧 ′). The inference engine might apply
the vectorization scheme. Notating the vectorization factors
on each dimension as (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧), then the problem space can
be defined as (𝑥,𝑦, 𝑧) = (⌈𝑥 ′/𝑣𝑥 ⌉, ⌈𝑦 ′/𝑣𝑦⌉, ⌈𝑧 ′/𝑣𝑧⌉). A work
group size is notated as (𝑤𝑥 ,𝑤𝑦,𝑤𝑧). For each (𝑤𝑥 ,𝑤𝑦,𝑤𝑧),
we check if it follows all of the proposed heuristic rules.

Rule I, fully utilizing shader cores.We should keep the high
utilization of shader cores. To use all cores on the target
device, the problem space should be partitioned according
to the maximum number of shader cores:

⌈𝑥/𝑤𝑥 ⌉ · ⌈𝑦/𝑤𝑦⌉ · ⌈𝑧/𝑤𝑧⌉ ≡ 0 (mod 𝑁𝑠𝑐 ), (1)
where 𝑁𝑠𝑐 is the number of shader cores of the target mobile
GPU. We can obtain 𝑁𝑠𝑐 via public APIs [2, 7].
Rule II, fully utilizing APUs.We should leverage all APU

computation capacities inside a core. Eachwork group should
have enough work items that can be distributed across all
APUs. Thus, we make the size of each group should be a
multiple of the number of APUs:

𝑤𝑥 ·𝑤𝑦 ·𝑤𝑧 ≡ 0 (mod 𝐾𝑎𝑐 ), (2)

where 𝐾𝑎𝑐 is the maximum number of work items that can
be simultaneously executed on a shader core. In practice,𝐾𝑎𝑐

depends on not only the number of APUs, but the operator
kernel’s register footprint and register file size as well. We
can also obtain 𝐾𝑎𝑐 via public APIs [2, 7].
Rule III, fully utilizing cache lines. We should use the L2

cache in the efficient way. For each data access, we make
data block just fill the whole cache line:

𝑤𝑖 · 𝑑𝑖 ·𝑈 ≡ 0 (mod𝑊𝑐𝑎𝑐ℎ𝑒 ), 𝑖 ∈ {𝑥,𝑦, 𝑧} (3)

where 𝑑𝑖 is the data block which is read each cycle along
the tiling dimension 𝑖 . In practical, 𝑑𝑖 is related to the vec-
torization scheme and the particular data layout used in the
inference engine. 𝑈 is the size of floating point arithmetic.
𝑊𝑐𝑎𝑐ℎ𝑒 represents the width of cache line in bytes. In our
experiment, 𝑖 = 𝑥 and we extract 𝑑𝑥 from TFLite GPU where
𝑑𝑥 is 8. 𝑈 is 4 since FP32 is used.𝑊𝑐𝑎𝑐ℎ𝑒 could be obtained
via the public API [7].

Rule IV, minimal problem space padding.Most of mobile
GPUs only support the unified size for all work groups. Thus,
the problem space might be padded if it is not divisible by
the partition. The padded workload obviously bring extra
costs. To avoid such padding we have the rule:

𝑥 ≡ 0 (mod𝑤𝑥 ), 𝑦 ≡ 0 (mod𝑤𝑦), 𝑧 ≡ 0 (mod𝑤𝑧), (4)

Rule V, minimal data accesses. Given a compute task, we
should reuse the loaded data as much as possible by minimiz-
ing the total data accesses, which leads to the high utilization
of mobile GPUs. We notate the data access number of a work
item as 𝐷𝑘 . 𝐷𝑘 should be a function related to the particular
kernel 𝑘 and𝑤𝑥 ,𝑤𝑦,𝑤𝑧, 𝑥,𝑦, 𝑧:

𝐷𝑘 = 𝑔(𝑤𝑥 ,𝑤𝑦,𝑤𝑧, 𝑥,𝑦, 𝑧) (5)

The total data access number𝑇𝐷𝑘 should be𝑇𝐷𝑘 = 𝑤𝑥 ·𝑤𝑦 ·
𝑤𝑧 · 𝐷𝑘 . By adjusting 𝑤𝑥 ,𝑤𝑦 and 𝑤𝑧 to minimize 𝑇𝐷𝑘 , we
could get the work group size rule.

To obtain 𝐷𝑘 , we analyze the source code of the kernel 𝑘 ,
and manually count the number of data accesses. Currently
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(c) Hikey 970.

vgg16
vgg19

resnet152
resnet101

inception v3
mobilnet v1

densenet201
densenet121

nasnet
0

250

500

750

1000

1250

1500

1750

2000

In
fe

re
nc

e 
Ti

m
e 

(m
s)

TFLite + Heuristic approach
TFLite GPU

(d) Vivo X30.

Figure 6: Inference latency usingTFLiteGPUwith andwithout our approach on each devicewhile running various
deep neural networks.

the kernel CONV and Dw-Conv are analyzed. We have the
following rule:

For Conv: 𝑤𝑥 ·𝑤𝑦 ≈ 2 ·𝑤𝑧, (6)
For Dw-Conv: 𝑤𝑥 ·𝑤𝑦 ≈𝑚𝑖𝑛(𝐶𝑥 ·𝐶𝑦, 𝐶𝑡 ), (7)

where 𝐶𝑥 , 𝐶𝑦 are the maximum number of work items that
can be specified in the dimension 𝑥 and 𝑦 of a work group.
𝐶𝑡 is the maximum total number of work items in a work
group.𝐶𝑥 ,𝐶𝑦 and𝐶𝑡 are related to the kernel 𝑘 and hardware
constraints, which can be obtained by public APIs [7].
The heuristics we discuss consider the characteristics of

the hardware (Rule I-III), the inference engine (Rule III, IV)
as well as the particular kernel implementations (Rule V).
We have more than these five rules, but we find these are
most efficient. We evaluate the rules by the importance score,
which is defined as

𝑆𝑟 =
1
𝑀

𝑀∑
𝑛=1

𝑓 (𝑊𝑝 ) − 𝑓 (𝑊𝑛)
𝑓 (𝑊𝑝 ) − 𝑓 (𝑊𝑏)

, (8)

where𝑀 is the number of work group sizes that follow the
rule 𝑟 . Given an operator, 𝑓 (𝑤) is the inference latency using
the work group size𝑤 .𝑊𝑛 ,𝑊𝑝 ,𝑊𝑏 stand for the evaluated
work group size, the work group size having the highest
latency and the lowest latency, respectively. Therefore, for
an operator, the higher 𝑆𝑟 is, the more good work group sizes
the rule 𝑟 can filter out.

We apply Equation 8 on the dataset used in Fig. 5. Table 3
summarizes the obtained importance scores. In run time,
we iteratively apply these rules until the work group size is
selected. There may be multiple candidates left. In that case,
we would randomly select one, because we believe they have
closed performance.

4.2 Preliminary Evaluation Results
We implement the proposed approach and integrate it into
latest TFLite GPU 2.1 on Android devices. Our approach is
very lightweight. It contains less than 100 lines of code and

Operator Rule I Rule II Rule III Rule IV Rule V
Conv 0.74 0.81 0.80 0.78 0.82

Dw-Conv 0.88 0.90 0.86 0.90 0.99
Table 3: The importance scores of Rule I-V for Conv
and Dw-Conv on tested devices.

it is easy to be migrated onto other inference engines. Cur-
rently Conv andDw-Conv are supported. For other operators
the predefined work group size is used.
We evaluate our approach in terms of the inference la-

tency and the APU utilization. We use the neural networks
mentioned in §2.1 and the devices listed in Table 1. We use
the performance of TFLite GPU as the baseline.
Fig. 6 illustrates the inference latency using TFLite GPU

with and without our approach on each device. Overall, our
approach could reduce 11.2% inference latency on average
compared to TFLite GPU. Small networks i.e. MobileNetsV1
are widely deployed in mobile applications.We could achieve
up to 32.8% inference-latency reduction. For large networks
i.e. VGG-16/19, up to 14.5% improvement could be obtained.

On the Adreno GPU, our approach gets notable results. Up
to 32.8% performance improvement is achieved and the av-
eraged improvement is 13%. On the Mali GPU, the averaged
improvement is about 8%. TFLite uses the exhaustive search
for Mali GPUs. The results also suggest that the exhaustive
search cannot guarantee to find the optimal work group size,
there might exist further issues.
We evaluate the APU utilization improvement as well.

Compared to the default TFLite GPU, we obtain 12% uti-
lization improvements on average. On the Mali GPU, the
utilization improves up to 18% and 8% on Adreno.
Our approach is very lightweight. The initialization in-

volving our approach costs around 2.7 seconds on average.
For small networks, the initialization can be finished within
1 second, which is acceptable for real mobile applications.
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5 RELATEDWORK
A number of works have been done to tune the work group
size towards improving GPU performance, which mainly fall
into the following three categories.
Exhaustive search. This method enumerates all possible

work group sizes and tests on the target device in run time.
The one with the lowest latency is selected. However, iter-
ative tests require significant time especially on resource
limited devices. In addition the long exhaustive search also
easily triggers the overheating problems, leading to the per-
formance degradation. TFLite applies this method for Mali
GPUs. Shown in Table 2, up to 20 minutes are spent where
nearly three thousand work group size candidates are tested.
Look-up table. This method obtains optimal settings for

popular hardware offline and saves into the look-up table.
In run time the selected work group size is read from the
table. However, current mobile GPUs usually can be con-
figured by manufactures [16], and thus there exist lots of
hardware variants. It is hard to cover all of them. Besides
that, the optimal work group size depends not only hardware,
but also operators’ kernel implementations. TFLite uses this
method for Adreno GPUs. Shown in Fig 3, the APUs are still
underutilized.

Prediction model. Machine learning based methods are pro-
posed too [8, 9]. By selecting features and training the model,
the best work group size and corresponding performance are
predicted. But due to the diversity and variety of mobile de-
vices and neural networks, it is too hard to collect necessary
training data and build a generic model.

6 CONCLUSION AND FUTUREWORK
In this paper, we take a first look at the inefficient issue of
deep learning inference with mobile GPUs. From measure-
ments, we find that although shader cores of the mobile GPU
are busy, arithmetic processing units inside cores are still
underutilized. The proper work group size is critical for high
mobile GPU utilization. To this end, we propose a heuristic-
based approach, considering both inference performance and
overheads. The early-stage results show our approach could
speed up the inference by up to 32.8%.
The rules we propose are based on heuristics from the

characteristics of hardware, inference engines and kernel
implementations. Currently we manually analyzed Conv and
Dw-Conv. In the future, we would leverage the code analysis
techniques to automatically extract rules from the kernel
source code, supporting more kernels. During our study, we
also notice other inefficient system issues with mobile GPU
inference. One of them is the overheating problem. How to
achieve the efficient and stable inference within the thermal
constraint may be an interesting problem to work on.
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