
Flexible High-resolution Object Detection on 

Edge Devices with Tunable Latency

Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu and Yunxin Liu

2022.2



Video Analytics on 

Edge Era

• Video analytics at scale

• E.g., Public safety, urban 
planning, business

• Advances in DL and hardware

• Call for Edge Intelligence

• E.g., smart cameras, 

• Easier deployment, lower price, 
higher availability, better privacy



The Gap

Resource 

constrained 

edge devices

Compute 

intensive 

workload

High resolution cameras, i.e., 4K & 8K



A Running Example - High-Res. Object Detection

 4K Cam.

 Multiple platforms
 Nvidia Jetson, Kirin, Snapdragon, etc.

 Improved performance
 Compared to SOTA DNN models (1-7s)

 Up to 8.1X speedups

 65.3% accuracy improvement on average

 Tunable latency
 Achieve best accuracy within a configured 

latency budget 



Measurements on Existing Art
• NNs are designed for low-

resolution

• E.g., 416x416 for YOLOv3

• Down-sampling inputs

• Low accuracy

• Only 0.8% for SSD-MobileNet

• Up-scaling NNs

• High latency

• High-cost low-gain

• Uniform partitioning

• Better accuracy

• Higher latency

mAP and GPU inference latency 

of selected NNs on PANDA 4K 

dataset with Jetson

mAP and inference latency of 

uniform partitioning on PANDA 

4K dataset with Jetson



Key Observations

 EfficientDet NNs 
 D0 (small) - D7 (large)

 Object sizes
 Small (S0-S3), Medium(M0-M3), Large(L0-L3)

 Margin accuracy gain
 D6 v.s. D3, ~6X higher latency

 On M2, 160% acc. improvement

 On L3, 10% acc. improvement

mAP of EfficientDet NNs on 

objects with different sizes

We should carefully distribute the limited compute 

power across the high-resolution image



Our Idea

• Do not design another NN, but

• Explore existing diverse models

• Do not distribute equal compute 

power to every pixel, but

• Prioritize blocks and distribute 

adaptively

• By assigning a proper NN

• Tunable performance

• Achieve best accuracy within (any) 

latency budgets on (any) hardware



Remix System Overview

Offline, generate the nonuniform 

partition plan, considering long-

term spatial characteristics

Online, determine which blocks can 

be skipped, considering short-term 

temporal dynamics



Adaptive Partition

 Input:
 A set of diverse NNs

 A few (5-30) historical frames 

 A latency budget

 Output
 Partition Plans

 Problems and submodules
1. Profile NNs -> NN Profiler

2. Estimate the accuracy and latency of 

candidates plans -> Perf. Estimation

3. Enumerate all possible plans -> Partition 

Planning

4. How to avoid objects being cut-off -> AC-Pad

Example of generated partition plan 

adaptively 



Selective Execution

 Input:
 Generated partition plans

 The set of NNs

 Live stream of 4K videos

 Output:
 Detection results

 Problems and submodules
 How to determine skipped blocks -> 

detection results feedback loop

 How to best utilize edge resources -> 

execution latency feedback loop

Example of executed partition blocks 

selectively



A Live Demo



Evaluation - Faster Inference and Higher Precision

 1.7x -8.1x speedups
 With only accuracy drop of < 0.2%

 Comparing to SOTA NNs

 65.3% accuracy improvements
 Under the same latency constraints

 Comparing with SOTA NNs 



Performance across Different Hardware

Jetson Xavier Kiren 970 Snapdragon 855



Performance across Scenes



System Overhead

Pre-processing OverheadEnergy Consumption



Conclusion and Updates

• Remix, adaptive partition and selective execution

• Cloud-Edge co-design

• Tunable latency and elastic AI

• Updates
• Triggering partition plans update automatically when scenes change

• Utilizing heterogenous processing units on edge, i.e., GPU, CPU, NPU, etc.



Thank You

shijiang@microsoft.com


